Previously we used a vibration filter that filters out amplitudes close to each other. It turns out there are cases where this results into vibrations that are too inaccurate. Remove this and move the 100Hz vibration filter (Only allowing a maximum of 100 vibrations per second) from sdl_impl to npad when enable_accurate_vibrations is set to false.
A vibration device is an input device that returns an unsigned byte as status.
It represents whether the vibration device supports vibration or not.
If the status returns 1, it supports vibration. Otherwise, it does not support vibration.
Allows for enabling and modifying vibration and vibration strength per player.
Also adds a toggle for enabling/disabling accurate vibrations.
Co-authored-by: Its-Rei <kupfel@gmail.com>
The implementation of these commands seem incomplete and causes rumble in Super Mario Party to stop working since only EndPermitVibrationSession is called. Thus, these are better off being marked as a stub until this can be investigated more thoroughly.
Sending too many state changes in a short period of time can cause massive performance issues.
As a result, we have to use several heuristics to reduce the number of state changes to minimize/eliminate this performance impact while maintaining the quality of these vibrations as much as possible.
This allows setting the vibration strength percentage anywhere from 1% to 100%.
Also hooks up the remaining motion button and checkbox in the Controller Applet.
Makes our error coverage a little more consistent across the board by
applying it to Linux side of things as well. This also makes it more
consistent with the warning settings in other libraries in the project.
This also updates httplib to 0.7.9, as there are several warning
cleanups made that allow us to enable several warnings as errors.
This allows toggling motion on or off, and allows access to the motion configuration.
Also changes the [waiting] text for motion buttons to Shake! as this is how motion is connected to a player.
This commit: Implements CPU Interrupts, Replaces Cycle Timing for Host
Timing, Reworks the Kernel's Scheduler, Introduce Idle State and
Suspended State, Recreates the bootmanager, Initializes Multicore
system.
Previously we never cleared the states of the entries and the key would stay held down, also looping over the key bytes for each key lead to setting every bit for the key state instead of the key we wanted