Implement a generic shader cache for fast lookups and invalidations.
Invalidations are cheap but expensive when a shader is invalidated.
Use two mutexes instead of one to avoid locking invalidations for
lookups and vice versa. When a shader has to be removed, lookups are
locked as expected.
Skip fast buffer uploads on Nvidia 443.24 Vulkan beta driver on OpenGL.
This driver throws the following error when calling BufferSubData or
BufferData on buffers that are candidates for fast constant buffer
uploads. This is the equivalens to push constants on Vulkan, except that
they can access the full buffer. The error:
Unknown internal debug message. The NVIDIA OpenGL driver has encountered
an out of memory error. This application might
behave inconsistently and fail.
If this error persists on future drivers, we might have to look deeper
into this issue. For now, we can black list it and log it as a temporary
solution.
Games using D3D idioms can join images and samplers when a shader
executes, instead of baking them into a combined sampler image. This is
also possible on Vulkan.
One approach to this solution would be to use separate samplers on
Vulkan and leave this unimplemented on OpenGL, but we can't do this
because there's no consistent way of determining which constant buffer
holds a sampler and which one an image. We could in theory find the
first bit and if it's in the TIC area, it's an image; but this falls
apart when an image or sampler handle use an index of zero.
The used approach is to track for a LOP.OR operation (this is done at an
IR level, not at an ISA level), track again the constant buffers used as
source and store this pair. Then, outside of shader execution, join
the sample and image pair with a bitwise or operation.
This approach won't work on games that truly use separate samplers in a
meaningful way. For example, pooling textures in a 2D array and
determining at runtime what sampler to use.
This invalidates OpenGL's disk shader cache :)
- Used mostly by D3D ports to Switch
NV_transform_feedback, NV_transform_feedback2 and
ARB_transform_feedback3 with NV_transform_feedback interactions allows
implementing transform feedbacks as dynamic state.
Maxwell implements transform feedbacks as dynamic state, so using these
extensions with TransformFeedbackStreamAttribsNV allows us to properly
emulate transform feedbacks without having to recompile shaders when the
state changes.
On Intel's proprietary drivers, gl_Layer and gl_ViewportIndex are not allowed members of gl_PerVertex block, causing the shader to fail to compile. Fix this by declaring these variables outside of gl_PerVertex.
This avoids using Nvidia's ASTC decoder on OpenGL.
The last time it was profiled, it was slower than yuzu's decoder.
While we are at it, fix a bug in the texture cache when native ASTC is
not supported.
Previously we were disabling compute shaders on Intel's proprietary driver due to broken compute. This has been fixed in the latest Intel drivers. Re-enable compute for Intel proprietary drivers and remove the check for broken compute.
Geometry shaders built from Nvidia's compiler check for bits[16:23] to
be less than or equal to 0 with VSETP to default to a "safe" value of
0x8000'0000 (safe from hardware's perspective). To avoid hitting this
path in the shader, return 0x00ff'0000 from S2R INVOCATION_INFO.
This seems to be the maximum number of vertices a geometry shader can
emit in a primitive.
Implement more surface reconstruct cases. Allow overlaps with more than
one layer and mipmap and copies all of them to the new texture.
- Fixes textures moving around objects on Xenoblade games
Avoid copying to a staging buffer on non-granular memory addresses.
Add a callable argument to StreamBufferUpload to be able to copy to the
staging buffer directly from ReadBlockUnsafe.
Stop ignoring image swizzles on depth and stencil images.
This doesn't fix a known issue on Xenoblade Chronicles 2 where an OpenGL
texture changes swizzles twice before being used. A proper fix would be
having a small texture view cache for this like we do on Vulkan.
While Vulkan was assuming we had no negative viewports, OpenGL code
was assuming we had them. Port the old code from Vulkan to OpenGL,
checking if the first viewport is negative before flipping faces.
This is not a complete implementation since we only check for the first
viewport to be negative. That said, unless a game is using Vulkan,
OpenGL and NVN games should be fine here, and we can always compare with
our Vulkan backend to see if there's a difference.
The check to flip faces when viewports are negative were a left over
from the old OpenGL code. This is not required on Vulkan where we have
negative viewports.
Hardware S2R special registers match gl_Thread*MaskNV. We can trivially
implement these using Nvidia's extension on OpenGL or naively stubbing
them with the ARB instructions to match. This might cause issues if the
host device warp size doesn't match Nvidia's. That said, this is
unlikely on proper shaders.
Refer to the attached url for more documentation about these flags.
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shader_thread_group.txt
Some operations like atomicMin were ignored because they returned were
being stored to RZ. This operations have a side effect and it was being
ignored.
Drop the std::list hack to allocate memory indefinitely.
Instead use a custom allocator that keeps references valid until
destruction. This allocates fixed chunks of memory and puts pointers in
a free list. When an allocation is no longer used put it back to the
free list, this doesn't heap allocate because std::vector doesn't change
the capacity. If the free list is empty, allocate a new chunk.
Most overlaps in the buffer cache only contain one mapped address.
We can avoid close to all heap allocations once the buffer cache is
warmed up by using a small_vector with a stack size of one.
Instead of using boost::icl::interval_map for caching, use
boost::intrusive::set. interval_map is intended as a container where the
keys can overlap with one another; we don't need this for caching
buffers and a std::set-like data structure that allows us to search with
lower_bound is enough.
Add code required to use OpenGL assembly programs based on
NV_gpu_program5. Decompilation for ARB programs is intended to be added
in a follow up commit. This does **not** include ARB decompilation and
it's not in an usable state.
The intention behind assembly programs is to reduce shader stutter
significantly on drivers supporting NV_gpu_program5 (and other required
extensions). Currently only Nvidia's proprietary driver supports these
extensions.
Add a UI option hidden for now to avoid people enabling this option
accidentally.
This code path has some limitations that OpenGL compatibility doesn't
have:
- NV_shader_storage_buffer_object is limited to 16 entries for a single
OpenGL context state (I don't know if this is an intended limitation, an
specification issue or I am missing something). Currently causes issues
on The Legend of Zelda: Link's Awakening.
- NV_parameter_buffer_object can't bind buffers using an offset
different to zero. The used workaround is to copy to a temporary buffer
(this doesn't happen often so it's not an issue).
On the other hand, it has the following advantages:
- Shaders build a lot faster.
- We have control over how floating point rounding is done over
individual instructions (SPIR-V on Vulkan can't do this).
- Operations on shared memory can be unsigned and signed.
- Transform feedbacks are dynamic state (not yet implemented).
- Parameter buffers (uniform buffers) are per stage, matching NVN and
hardware's behavior.
- The API to bind and create assembly programs makes sense, unlike
ARB_separate_shader_objects.
Constant attributes (in OpenGL known disabled attributes) are not
supported on Vulkan, even with extensions. To emulate this behavior we
return zero on reads from disabled vertex attributes in shader code.
This has no caching cost because attribute formats are not dynamic state
on Vulkan and we have to store it in the pipeline cache anyway.
- Fixes Animal Crossing: New Horizons terrain borders
This was a left over from OpenGL when disabled buffers where not properly
emulated. We no longer have to assert this as it is checked in vertex
buffer initialization.
"Not equal" operators on GLSL seem to behave as unordered when we expect
an ordered comparison.
Manually emulate this checking for LGE values (numbers, not-NaNs).
This should fix grass interactions on Breath of the Wild on Vulkan.
It is currently untested against validation layers.
Nvidia's Windows 443.09 beta driver or Linux 440.66.12 is required for
now.
In file included from src/video_core/renderer_opengl/renderer_opengl.cpp:25:
In file included from src/./video_core/renderer_opengl/gl_rasterizer.h:26:
In file included from src/./video_core/renderer_opengl/gl_fence_manager.h:11:
src/./video_core/fence_manager.h:91:32: error: use 'template' keyword
to treat 'Write' as a dependent template name
memory_manager.Write<u32>(current_fence->GetAddress(), current_fence->GetPayload());
^
template
src/./video_core/fence_manager.h:137:32: error: use 'template'
keyword to treat 'Write' as a dependent template name
memory_manager.Write<u32>(current_fence->GetAddress(), current_fence->GetPayload());
^
template
Reduces some header churn and reduces rebuilds when some header
internals change.
While we're at it we can also resolve a missing include in buffer_cache.
Xenoblade 2 invokes a draw call with zero vertices.
This is likely due to indirect drawing (glDrawArraysIndirect).
This causes a crash in the staging buffer pool when trying to create a
buffer with a size of zero. To workaround this, skip index buffer setup
entirely when the number of indices is zero.
Drop MemoryBarrier from the buffer cache and use Maxwell3D's register
WaitForIdle.
To implement this on OpenGL we just call glMemoryBarrier with the
necessary bits.
Vulkan lacks this synchronization primitive, so we set an event and
immediately wait for it. This is not a pretty solution, but it's what
Vulkan can do without submitting the current command buffer to the queue
(which ends up being more expensive on the CPU).
Using deko3d as reference:
4e47ba0013/source/maxwell/gpu_3d_state.cpp (L42)
We were using bits 3 and 4 to determine depth clamping, but these are
the same both enabled and disabled:
state->depthClampEnable ? 0x101A : 0x181D
The same happens on Nvidia's OpenGL driver, where they do something like
this (default capabilities, GL 4.5 compatibility):
(state & DEPTH_CLAMP) != 0 ? 0x201a : 0x281c
There's always a difference between the first bits in this register, but
bit 11 is consistently disabled on both deko3d/NVN and OpenGL. This
commit changes yuzu's behaviour to use bit 11 to determine depth
clamping.
- Fixes depth issues on Super Mario Odyssey's intro.
This reverts commit 94b0e2e5da.
preserve_contents proved to be a meaningful optimization. This commit
reintroduces it but properly implemented on OpenGL.
We have to make sure the clear removes all the previous contents of the
image.
It's not currently implemented on Vulkan because we can do smart things
there that's preferred to be introduced in a separate commit.
Deduplicate code shared between vk_pipeline_cache and gl_shader_cache as
well as shader decoder code.
While we are at it, fix a bug in gl_shader_cache where compute shaders
had an start offset of a stage shader.
Signed integer addition overflow might be undefined behavior. It's free
to change operations to UAdd and use unsigned integers to avoid
potential bugs.
P2R CC takes the state of condition codes and puts them into a register.
We already have this implemented for PR (predicates). This commit
implements CC over that.
Sometimes for unknown reasons NVN games can bind a render target format
of 0. This may be a yuzu bug.
With the commits before this the formats were specified without being
"packed", assuming all formats and texceptions will be written like in
the color_attachments vector.
To address this issue, iterate all render targets and pack them as they
are valid. This way they will match color_attachments.
- Fixes validation errors and graphical issues on Breath of the Wild.
The encoding for negation and absolute value was wrong.
Extracting is now done manually. Similar instructions having different
encodings is the rule, not the exception. To keep sanity and readability
I preferred to extract the desired bit manually.
This is implemented against nxas:
8dbc389957/table.h (L68)
That is itself tested against nvdisasm (Nvidia's official disassembler).
This allows deducing some properties from the texture instruction before
asking the runtime. By doing this we can handle type mismatches in some
instructions from the renderer instead of the shader decoder.
Fixes texelFetch issues with games using 2D texture instructions on a 1D
sampler.
The intention behind this was to assign a float to from an uint32_t, but
it was unintentionally being copied directly into the std::optional.
Copy to a temporary and assign that temporary to std::optional. This can
be replaced with std::bit_cast<float> once we are in C++20.
All drivers (even Intel) seem to have a device local memory type that is
not host visible. Remove this flag so all devices follow the same path.
This fixes a crash when trying to map to host device local memory on
integrated devices.
Introduce a default buffer getter that lazily constructs an empty
buffer. This is intended to match OpenGL's buffer 0.
Use this for disabled vertex and uniform buffers.
While we are at it, include vertex buffer usages for staging buffers to
silence validation errors.
On NVN buffers can be enabled but have no size. According to deko3d and
the behavior we see in Animal Crossing: New Horizons these buffers get
the special address of 0x1000 and limit themselves to 0xfff.
Implement buffers without a size by binding a null buffer to OpenGL
without a side.
1d1930beea/source/maxwell/gpu_3d_vbo.cpp (L62-L63)