yuzu/src/input_common/udp/client.cpp

418 lines
16 KiB
C++
Raw Normal View History

// Copyright 2018 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <chrono>
#include <cstring>
#include <functional>
#include <thread>
#include <boost/asio.hpp>
#include "common/logging/log.h"
#include "core/settings.h"
#include "input_common/udp/client.h"
#include "input_common/udp/protocol.h"
using boost::asio::ip::udp;
namespace InputCommon::CemuhookUDP {
struct SocketCallback {
std::function<void(Response::Version)> version;
std::function<void(Response::PortInfo)> port_info;
std::function<void(Response::PadData)> pad_data;
};
class Socket {
public:
using clock = std::chrono::system_clock;
explicit Socket(const std::string& host, u16 port, std::size_t pad_index_, u32 client_id_,
SocketCallback callback_)
: callback(std::move(callback_)), timer(io_service),
socket(io_service, udp::endpoint(udp::v4(), 0)), client_id(client_id_),
pad_index(pad_index_) {
boost::system::error_code ec{};
auto ipv4 = boost::asio::ip::make_address_v4(host, ec);
if (ec.value() != boost::system::errc::success) {
LOG_ERROR(Input, "Invalid IPv4 address \"{}\" provided to socket", host);
ipv4 = boost::asio::ip::address_v4{};
}
send_endpoint = {udp::endpoint(ipv4, port)};
}
void Stop() {
io_service.stop();
}
void Loop() {
io_service.run();
}
void StartSend(const clock::time_point& from) {
timer.expires_at(from + std::chrono::seconds(3));
timer.async_wait([this](const boost::system::error_code& error) { HandleSend(error); });
}
void StartReceive() {
socket.async_receive_from(
boost::asio::buffer(receive_buffer), receive_endpoint,
[this](const boost::system::error_code& error, std::size_t bytes_transferred) {
HandleReceive(error, bytes_transferred);
});
}
private:
void HandleReceive(const boost::system::error_code& error, std::size_t bytes_transferred) {
if (auto type = Response::Validate(receive_buffer.data(), bytes_transferred)) {
switch (*type) {
case Type::Version: {
Response::Version version;
std::memcpy(&version, &receive_buffer[sizeof(Header)], sizeof(Response::Version));
callback.version(std::move(version));
break;
}
case Type::PortInfo: {
Response::PortInfo port_info;
std::memcpy(&port_info, &receive_buffer[sizeof(Header)],
sizeof(Response::PortInfo));
callback.port_info(std::move(port_info));
break;
}
case Type::PadData: {
Response::PadData pad_data;
std::memcpy(&pad_data, &receive_buffer[sizeof(Header)], sizeof(Response::PadData));
callback.pad_data(std::move(pad_data));
break;
}
}
}
StartReceive();
}
void HandleSend(const boost::system::error_code& error) {
boost::system::error_code _ignored{};
// Send a request for getting port info for the pad
const Request::PortInfo port_info{1, {static_cast<u8>(pad_index), 0, 0, 0}};
2019-11-03 06:04:28 +00:00
const auto port_message = Request::Create(port_info, client_id);
std::memcpy(&send_buffer1, &port_message, PORT_INFO_SIZE);
socket.send_to(boost::asio::buffer(send_buffer1), send_endpoint, {}, _ignored);
// Send a request for getting pad data for the pad
const Request::PadData pad_data{
Request::PadData::Flags::Id,
static_cast<u8>(pad_index),
EMPTY_MAC_ADDRESS,
};
2019-11-03 06:04:28 +00:00
const auto pad_message = Request::Create(pad_data, client_id);
std::memcpy(send_buffer2.data(), &pad_message, PAD_DATA_SIZE);
socket.send_to(boost::asio::buffer(send_buffer2), send_endpoint, {}, _ignored);
StartSend(timer.expiry());
}
SocketCallback callback;
boost::asio::io_service io_service;
boost::asio::basic_waitable_timer<clock> timer;
udp::socket socket;
2019-11-03 06:04:28 +00:00
u32 client_id{};
std::size_t pad_index{};
static constexpr std::size_t PORT_INFO_SIZE = sizeof(Message<Request::PortInfo>);
static constexpr std::size_t PAD_DATA_SIZE = sizeof(Message<Request::PadData>);
std::array<u8, PORT_INFO_SIZE> send_buffer1;
std::array<u8, PAD_DATA_SIZE> send_buffer2;
udp::endpoint send_endpoint;
std::array<u8, MAX_PACKET_SIZE> receive_buffer;
udp::endpoint receive_endpoint;
};
static void SocketLoop(Socket* socket) {
socket->StartReceive();
socket->StartSend(Socket::clock::now());
socket->Loop();
}
Client::Client() {
LOG_INFO(Input, "Udp Initialization started");
for (std::size_t client = 0; client < clients.size(); client++) {
const auto pad = client % 4;
StartCommunication(client, Settings::values.udp_input_address,
Settings::values.udp_input_port, pad, 24872);
// Set motion parameters
// SetGyroThreshold value should be dependent on GyroscopeZeroDriftMode
2020-09-05 04:47:56 +00:00
// Real HW values are unknown, 0.0001 is an approximate to Standard
clients[client].motion.SetGyroThreshold(0.0001f);
}
}
Client::~Client() {
Reset();
}
std::vector<Common::ParamPackage> Client::GetInputDevices() const {
std::vector<Common::ParamPackage> devices;
for (std::size_t client = 0; client < clients.size(); client++) {
if (!DeviceConnected(client)) {
continue;
}
2020-09-05 04:47:56 +00:00
std::string name = fmt::format("UDP Controller {}", client);
devices.emplace_back(Common::ParamPackage{
{"class", "cemuhookudp"},
{"display", std::move(name)},
{"port", std::to_string(client)},
});
}
return devices;
}
bool Client::DeviceConnected(std::size_t pad) const {
// Use last timestamp to detect if the socket has stopped sending data
const auto now = std::chrono::system_clock::now();
const auto time_difference = static_cast<u64>(
std::chrono::duration_cast<std::chrono::milliseconds>(now - clients[pad].last_motion_update)
.count());
return time_difference < 1000 && clients[pad].active == 1;
}
void Client::ReloadUDPClient() {
for (std::size_t client = 0; client < clients.size(); client++) {
ReloadSocket(Settings::values.udp_input_address, Settings::values.udp_input_port, client);
}
}
void Client::ReloadSocket(const std::string& host, u16 port, std::size_t pad_index, u32 client_id) {
// client number must be determined from host / port and pad index
const std::size_t client = pad_index;
clients[client].socket->Stop();
clients[client].thread.join();
StartCommunication(client, host, port, pad_index, client_id);
}
void Client::OnVersion(Response::Version data) {
LOG_TRACE(Input, "Version packet received: {}", data.version);
}
void Client::OnPortInfo(Response::PortInfo data) {
LOG_TRACE(Input, "PortInfo packet received: {}", data.model);
}
void Client::OnPadData(Response::PadData data) {
// Client number must be determined from host / port and pad index
const std::size_t client = data.info.id;
LOG_TRACE(Input, "PadData packet received");
if (data.packet_counter == clients[client].packet_sequence) {
LOG_WARNING(
Input,
"PadData packet dropped because its stale info. Current count: {} Packet count: {}",
clients[client].packet_sequence, data.packet_counter);
return;
}
clients[client].active = data.info.is_pad_active;
clients[client].packet_sequence = data.packet_counter;
const auto now = std::chrono::system_clock::now();
const auto time_difference =
static_cast<u64>(std::chrono::duration_cast<std::chrono::microseconds>(
now - clients[client].last_motion_update)
.count());
clients[client].last_motion_update = now;
const Common::Vec3f raw_gyroscope = {data.gyro.pitch, data.gyro.roll, -data.gyro.yaw};
clients[client].motion.SetAcceleration({data.accel.x, -data.accel.z, data.accel.y});
// Gyroscope values are not it the correct scale from better joy.
2020-09-05 04:47:56 +00:00
// Dividing by 312 allows us to make one full turn = 1 turn
// This must be a configurable valued called sensitivity
clients[client].motion.SetGyroscope(raw_gyroscope / 312.0f);
clients[client].motion.UpdateRotation(time_difference);
clients[client].motion.UpdateOrientation(time_difference);
{
std::lock_guard guard(clients[client].status.update_mutex);
2020-09-18 01:26:34 +00:00
clients[client].status.motion_status = clients[client].motion.GetMotion();
// TODO: add a setting for "click" touch. Click touch refers to a device that differentiates
// between a simple "tap" and a hard press that causes the touch screen to click.
2019-11-03 06:04:28 +00:00
const bool is_active = data.touch_1.is_active != 0;
float x = 0;
float y = 0;
if (is_active && clients[client].status.touch_calibration) {
const u16 min_x = clients[client].status.touch_calibration->min_x;
const u16 max_x = clients[client].status.touch_calibration->max_x;
const u16 min_y = clients[client].status.touch_calibration->min_y;
const u16 max_y = clients[client].status.touch_calibration->max_y;
x = static_cast<float>(std::clamp(static_cast<u16>(data.touch_1.x), min_x, max_x) -
min_x) /
static_cast<float>(max_x - min_x);
y = static_cast<float>(std::clamp(static_cast<u16>(data.touch_1.y), min_y, max_y) -
min_y) /
static_cast<float>(max_y - min_y);
}
clients[client].status.touch_status = {x, y, is_active};
if (configuring) {
2020-09-18 01:26:34 +00:00
const Common::Vec3f gyroscope = clients[client].motion.GetGyroscope();
const Common::Vec3f accelerometer = clients[client].motion.GetAcceleration();
UpdateYuzuSettings(client, accelerometer, gyroscope, is_active);
}
}
}
void Client::StartCommunication(std::size_t client, const std::string& host, u16 port,
std::size_t pad_index, u32 client_id) {
SocketCallback callback{[this](Response::Version version) { OnVersion(version); },
[this](Response::PortInfo info) { OnPortInfo(info); },
[this](Response::PadData data) { OnPadData(data); }};
LOG_INFO(Input, "Starting communication with UDP input server on {}:{}", host, port);
clients[client].socket = std::make_unique<Socket>(host, port, pad_index, client_id, callback);
clients[client].thread = std::thread{SocketLoop, clients[client].socket.get()};
}
void Client::Reset() {
for (auto& client : clients) {
client.socket->Stop();
client.thread.join();
}
}
void Client::UpdateYuzuSettings(std::size_t client, const Common::Vec3<float>& acc,
const Common::Vec3<float>& gyro, bool touch) {
if (gyro.Length() > 0.2f) {
LOG_DEBUG(Input, "UDP Controller {}: gyro=({}, {}, {}), accel=({}, {}, {}), touch={}",
client, gyro[0], gyro[1], gyro[2], acc[0], acc[1], acc[2], touch);
}
2020-09-05 04:47:56 +00:00
UDPPadStatus pad;
if (touch) {
pad.touch = PadTouch::Click;
pad_queue[client].Push(pad);
}
for (size_t i = 0; i < 3; ++i) {
if (gyro[i] > 5.0f || gyro[i] < -5.0f) {
2020-09-05 04:47:56 +00:00
pad.motion = static_cast<PadMotion>(i);
pad.motion_value = gyro[i];
pad_queue[client].Push(pad);
}
if (acc[i] > 1.75f || acc[i] < -1.75f) {
2020-09-05 04:47:56 +00:00
pad.motion = static_cast<PadMotion>(i + 3);
pad.motion_value = acc[i];
pad_queue[client].Push(pad);
}
}
}
void Client::BeginConfiguration() {
for (auto& pq : pad_queue) {
pq.Clear();
}
configuring = true;
}
void Client::EndConfiguration() {
for (auto& pq : pad_queue) {
pq.Clear();
}
configuring = false;
}
DeviceStatus& Client::GetPadState(std::size_t pad) {
return clients[pad].status;
}
const DeviceStatus& Client::GetPadState(std::size_t pad) const {
return clients[pad].status;
}
std::array<Common::SPSCQueue<UDPPadStatus>, 4>& Client::GetPadQueue() {
return pad_queue;
}
const std::array<Common::SPSCQueue<UDPPadStatus>, 4>& Client::GetPadQueue() const {
return pad_queue;
}
void TestCommunication(const std::string& host, u16 port, std::size_t pad_index, u32 client_id,
const std::function<void()>& success_callback,
const std::function<void()>& failure_callback) {
std::thread([=] {
Common::Event success_event;
SocketCallback callback{[](Response::Version version) {}, [](Response::PortInfo info) {},
[&](Response::PadData data) { success_event.Set(); }};
Socket socket{host, port, pad_index, client_id, std::move(callback)};
std::thread worker_thread{SocketLoop, &socket};
const bool result = success_event.WaitFor(std::chrono::seconds(8));
socket.Stop();
worker_thread.join();
2019-11-03 07:07:04 +00:00
if (result) {
success_callback();
2019-11-03 07:07:04 +00:00
} else {
failure_callback();
2019-11-03 07:07:04 +00:00
}
}).detach();
}
CalibrationConfigurationJob::CalibrationConfigurationJob(
const std::string& host, u16 port, std::size_t pad_index, u32 client_id,
std::function<void(Status)> status_callback,
std::function<void(u16, u16, u16, u16)> data_callback) {
std::thread([=, this] {
constexpr u16 CALIBRATION_THRESHOLD = 100;
2019-11-03 07:07:04 +00:00
u16 min_x{UINT16_MAX};
u16 min_y{UINT16_MAX};
u16 max_x{};
u16 max_y{};
Status current_status{Status::Initialized};
SocketCallback callback{[](Response::Version version) {}, [](Response::PortInfo info) {},
[&](Response::PadData data) {
if (current_status == Status::Initialized) {
// Receiving data means the communication is ready now
current_status = Status::Ready;
status_callback(current_status);
}
if (data.touch_1.is_active == 0) {
return;
2019-11-03 07:07:04 +00:00
}
LOG_DEBUG(Input, "Current touch: {} {}", data.touch_1.x,
data.touch_1.y);
min_x = std::min(min_x, static_cast<u16>(data.touch_1.x));
min_y = std::min(min_y, static_cast<u16>(data.touch_1.y));
if (current_status == Status::Ready) {
// First touch - min data (min_x/min_y)
current_status = Status::Stage1Completed;
status_callback(current_status);
}
if (data.touch_1.x - min_x > CALIBRATION_THRESHOLD &&
data.touch_1.y - min_y > CALIBRATION_THRESHOLD) {
// Set the current position as max value and finishes
// configuration
max_x = data.touch_1.x;
max_y = data.touch_1.y;
current_status = Status::Completed;
data_callback(min_x, min_y, max_x, max_y);
status_callback(current_status);
complete_event.Set();
}
}};
Socket socket{host, port, pad_index, client_id, std::move(callback)};
std::thread worker_thread{SocketLoop, &socket};
complete_event.Wait();
socket.Stop();
worker_thread.join();
}).detach();
}
CalibrationConfigurationJob::~CalibrationConfigurationJob() {
Stop();
}
void CalibrationConfigurationJob::Stop() {
complete_event.Set();
}
} // namespace InputCommon::CemuhookUDP