yuzu/src/shader_recompiler/backend/glasm/emit_glasm_image.cpp

582 lines
23 KiB
C++
Raw Normal View History

// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <utility>
#include "shader_recompiler/backend/glasm/emit_context.h"
#include "shader_recompiler/backend/glasm/emit_glasm_instructions.h"
#include "shader_recompiler/frontend/ir/modifiers.h"
#include "shader_recompiler/frontend/ir/value.h"
namespace Shader::Backend::GLASM {
namespace {
struct ScopedRegister {
ScopedRegister() = default;
ScopedRegister(RegAlloc& reg_alloc_) : reg_alloc{&reg_alloc_}, reg{reg_alloc->AllocReg()} {}
~ScopedRegister() {
if (reg_alloc) {
reg_alloc->FreeReg(reg);
}
}
ScopedRegister& operator=(ScopedRegister&& rhs) noexcept {
if (reg_alloc) {
reg_alloc->FreeReg(reg);
}
reg_alloc = std::exchange(rhs.reg_alloc, nullptr);
reg = rhs.reg;
return *this;
}
ScopedRegister(ScopedRegister&& rhs) noexcept
: reg_alloc{std::exchange(rhs.reg_alloc, nullptr)}, reg{rhs.reg} {}
ScopedRegister& operator=(const ScopedRegister&) = delete;
ScopedRegister(const ScopedRegister&) = delete;
RegAlloc* reg_alloc{};
Register reg;
};
std::string Texture(EmitContext& ctx, IR::TextureInstInfo info,
[[maybe_unused]] const IR::Value& index) {
// FIXME: indexed reads
2021-05-19 05:05:24 +00:00
if (info.type == TextureType::Buffer) {
return fmt::format("texture[{}]", ctx.texture_buffer_bindings.at(info.descriptor_index));
} else {
return fmt::format("texture[{}]", ctx.texture_bindings.at(info.descriptor_index));
}
}
std::string_view TextureType(IR::TextureInstInfo info) {
if (info.is_depth) {
switch (info.type) {
case TextureType::Color1D:
return "SHADOW1D";
case TextureType::ColorArray1D:
return "SHADOWARRAY1D";
case TextureType::Color2D:
return "SHADOW2D";
case TextureType::ColorArray2D:
return "SHADOWARRAY2D";
case TextureType::Color3D:
return "SHADOW3D";
case TextureType::ColorCube:
return "SHADOWCUBE";
case TextureType::ColorArrayCube:
return "SHADOWARRAYCUBE";
case TextureType::Buffer:
return "SHADOWBUFFER";
}
} else {
switch (info.type) {
case TextureType::Color1D:
return "1D";
case TextureType::ColorArray1D:
return "ARRAY1D";
case TextureType::Color2D:
return "2D";
case TextureType::ColorArray2D:
return "ARRAY2D";
case TextureType::Color3D:
return "3D";
case TextureType::ColorCube:
return "CUBE";
case TextureType::ColorArrayCube:
return "ARRAYCUBE";
case TextureType::Buffer:
return "BUFFER";
}
}
throw InvalidArgument("Invalid texture type {}", info.type.Value());
}
std::string Offset(EmitContext& ctx, const IR::Value& offset) {
if (offset.IsEmpty()) {
return "";
}
return fmt::format(",offset({})", Register{ctx.reg_alloc.Consume(offset)});
}
std::pair<ScopedRegister, ScopedRegister> AllocOffsetsRegs(EmitContext& ctx,
const IR::Value& offset2) {
if (offset2.IsEmpty()) {
return {};
} else {
return {ctx.reg_alloc, ctx.reg_alloc};
}
}
void SwizzleOffsets(EmitContext& ctx, Register off_x, Register off_y, const IR::Value& offset1,
const IR::Value& offset2) {
const Register offsets_a{ctx.reg_alloc.Consume(offset1)};
const Register offsets_b{ctx.reg_alloc.Consume(offset2)};
// Input swizzle: [XYXY] [XYXY]
// Output swizzle: [XXXX] [YYYY]
ctx.Add("MOV {}.x,{}.x;"
"MOV {}.y,{}.z;"
"MOV {}.z,{}.x;"
"MOV {}.w,{}.z;"
"MOV {}.x,{}.y;"
"MOV {}.y,{}.w;"
"MOV {}.z,{}.y;"
"MOV {}.w,{}.w;",
off_x, offsets_a, off_x, offsets_a, off_x, offsets_b, off_x, offsets_b, off_y,
offsets_a, off_y, offsets_a, off_y, offsets_b, off_y, offsets_b);
}
std::pair<std::string, ScopedRegister> Coord(EmitContext& ctx, const IR::Value& coord) {
if (coord.IsImmediate()) {
ScopedRegister scoped_reg(ctx.reg_alloc);
return {fmt::to_string(scoped_reg.reg), std::move(scoped_reg)};
}
std::string coord_vec{fmt::to_string(Register{ctx.reg_alloc.Consume(coord)})};
if (coord.InstRecursive()->HasUses()) {
// Move non-dead coords to a separate register, although this should never happen because
// vectors are only assembled for immediate texture instructions
ctx.Add("MOV.F RC,{};", coord_vec);
coord_vec = "RC";
}
return {std::move(coord_vec), ScopedRegister{}};
}
void StoreSparse(EmitContext& ctx, IR::Inst* sparse_inst) {
if (!sparse_inst) {
return;
}
const Register sparse_ret{ctx.reg_alloc.Define(*sparse_inst)};
ctx.Add("MOV.S {},-1;"
"MOV.S {}(NONRESIDENT),0;",
sparse_ret, sparse_ret);
sparse_inst->Invalidate();
}
} // Anonymous namespace
void EmitImageSampleImplicitLod(EmitContext& ctx, IR::Inst& inst, const IR::Value& index,
const IR::Value& coord, Register bias_lc, const IR::Value& offset) {
const auto info{inst.Flags<IR::TextureInstInfo>()};
const auto sparse_inst{inst.GetAssociatedPseudoOperation(IR::Opcode::GetSparseFromOp)};
const std::string_view sparse_mod{sparse_inst ? ".SPARSE" : ""};
const std::string_view lod_clamp_mod{info.has_lod_clamp ? ".LODCLAMP" : ""};
const std::string_view type{TextureType(info)};
const std::string texture{Texture(ctx, info, index)};
const std::string offset_vec{Offset(ctx, offset)};
const auto [coord_vec, coord_alloc]{Coord(ctx, coord)};
const Register ret{ctx.reg_alloc.Define(inst)};
if (info.has_bias) {
if (info.type == TextureType::ColorArrayCube) {
2021-05-16 21:00:31 +00:00
ctx.Add("TXB.F{}{} {},{},{},{},ARRAYCUBE{};", lod_clamp_mod, sparse_mod, ret, coord_vec,
bias_lc, texture, offset_vec);
} else {
if (info.has_lod_clamp) {
ctx.Add("MOV.F {}.w,{}.x;"
2021-05-16 21:00:31 +00:00
"TXB.F.LODCLAMP{} {},{},{}.y,{},{}{};",
coord_vec, bias_lc, sparse_mod, ret, coord_vec, bias_lc, texture, type,
offset_vec);
} else {
ctx.Add("MOV.F {}.w,{}.x;"
2021-05-16 21:00:31 +00:00
"TXB.F{} {},{},{},{}{};",
coord_vec, bias_lc, sparse_mod, ret, coord_vec, texture, type, offset_vec);
}
}
} else {
if (info.has_lod_clamp && info.type == TextureType::ColorArrayCube) {
2021-05-16 21:00:31 +00:00
ctx.Add("TEX.F.LODCLAMP{} {},{},{},{},ARRAYCUBE{};", sparse_mod, ret, coord_vec,
bias_lc, texture, offset_vec);
} else {
2021-05-16 21:00:31 +00:00
ctx.Add("TEX.F{}{} {},{},{},{}{};", lod_clamp_mod, sparse_mod, ret, coord_vec, texture,
type, offset_vec);
}
}
StoreSparse(ctx, sparse_inst);
}
void EmitImageSampleExplicitLod(EmitContext& ctx, IR::Inst& inst, const IR::Value& index,
const IR::Value& coord, ScalarF32 lod, const IR::Value& offset) {
const auto info{inst.Flags<IR::TextureInstInfo>()};
const auto sparse_inst{inst.GetAssociatedPseudoOperation(IR::Opcode::GetSparseFromOp)};
const std::string_view sparse_mod{sparse_inst ? ".SPARSE" : ""};
const std::string_view type{TextureType(info)};
const std::string texture{Texture(ctx, info, index)};
const std::string offset_vec{Offset(ctx, offset)};
const auto [coord_vec, coord_alloc]{Coord(ctx, coord)};
const Register ret{ctx.reg_alloc.Define(inst)};
if (info.type == TextureType::ColorArrayCube) {
ctx.Add("TXL.F{} {},{},{},{},ARRAYCUBE{};", sparse_mod, ret, coord_vec, lod, texture,
offset_vec);
} else {
ctx.Add("MOV.F {}.w,{};"
"TXL.F{} {},{},{},{}{};",
coord_vec, lod, sparse_mod, ret, coord_vec, texture, type, offset_vec);
}
StoreSparse(ctx, sparse_inst);
}
void EmitImageSampleDrefImplicitLod(EmitContext& ctx, IR::Inst& inst, const IR::Value& index,
const IR::Value& coord, ScalarF32 dref, Register bias_lc,
const IR::Value& offset) {
const auto info{inst.Flags<IR::TextureInstInfo>()};
const auto sparse_inst{inst.GetAssociatedPseudoOperation(IR::Opcode::GetSparseFromOp)};
const std::string_view sparse_mod{sparse_inst ? ".SPARSE" : ""};
const std::string_view type{TextureType(info)};
const std::string texture{Texture(ctx, info, index)};
const std::string offset_vec{Offset(ctx, offset)};
const auto [coord_vec, coord_alloc]{Coord(ctx, coord)};
const Register ret{ctx.reg_alloc.Define(inst)};
if (info.has_bias) {
if (info.has_lod_clamp) {
switch (info.type) {
case TextureType::Color1D:
case TextureType::ColorArray1D:
case TextureType::Color2D:
ctx.Add("MOV.F {}.z,{};"
"MOV.F {}.w,{}.x;"
"TXB.F.LODCLAMP{} {},{},{}.y,{},{}{};",
coord_vec, dref, coord_vec, bias_lc, sparse_mod, ret, coord_vec, bias_lc,
texture, type, offset_vec);
break;
case TextureType::ColorArray2D:
case TextureType::ColorCube:
ctx.Add("MOV.F {}.w,{};"
"TXB.F.LODCLAMP{} {},{},{},{},{}{};",
coord_vec, dref, sparse_mod, ret, coord_vec, bias_lc, texture, type,
offset_vec);
break;
default:
throw NotImplementedException("Invalid type {} with bias and lod clamp",
info.type.Value());
}
} else {
switch (info.type) {
case TextureType::Color1D:
case TextureType::ColorArray1D:
case TextureType::Color2D:
ctx.Add("MOV.F {}.z,{};"
"MOV.F {}.w,{}.x;"
"TXB.F{} {},{},{},{}{};",
coord_vec, dref, coord_vec, bias_lc, sparse_mod, ret, coord_vec, texture,
type, offset_vec);
break;
case TextureType::ColorArray2D:
case TextureType::ColorCube:
ctx.Add("MOV.F {}.w,{};"
"TXB.F{} {},{},{},{},{}{};",
coord_vec, dref, sparse_mod, ret, coord_vec, bias_lc, texture, type,
offset_vec);
break;
case TextureType::ColorArrayCube: {
const ScopedRegister pair{ctx.reg_alloc};
ctx.Add("MOV.F {}.x,{};"
"MOV.F {}.y,{}.x;"
"TXB.F{} {},{},{},{},{}{};",
pair.reg, dref, pair.reg, bias_lc, sparse_mod, ret, coord_vec, pair.reg,
texture, type, offset_vec);
break;
}
default:
throw NotImplementedException("Invalid type {}", info.type.Value());
}
}
} else {
if (info.has_lod_clamp) {
if (info.type != TextureType::ColorArrayCube) {
const bool w_swizzle{info.type == TextureType::ColorArray2D ||
info.type == TextureType::ColorCube};
const char dref_swizzle{w_swizzle ? 'w' : 'z'};
ctx.Add("MOV.F {}.{},{};"
"TEX.F.LODCLAMP{} {},{},{},{},{}{};",
coord_vec, dref_swizzle, dref, sparse_mod, ret, coord_vec, bias_lc, texture,
type, offset_vec);
} else {
const ScopedRegister pair{ctx.reg_alloc};
ctx.Add("MOV.F {}.x,{};"
"MOV.F {}.y,{};"
"TEX.F.LODCLAMP{} {},{},{},{},{}{};",
pair.reg, dref, pair.reg, bias_lc, sparse_mod, ret, coord_vec, pair.reg,
texture, type, offset_vec);
}
} else {
if (info.type != TextureType::ColorArrayCube) {
const bool w_swizzle{info.type == TextureType::ColorArray2D ||
info.type == TextureType::ColorCube};
const char dref_swizzle{w_swizzle ? 'w' : 'z'};
ctx.Add("MOV.F {}.{},{};"
"TEX.F{} {},{},{},{}{};",
coord_vec, dref_swizzle, dref, sparse_mod, ret, coord_vec, texture, type,
offset_vec);
} else {
const ScopedRegister pair{ctx.reg_alloc};
ctx.Add("TEX.F{} {},{},{},{},{}{};", sparse_mod, ret, coord_vec, dref, texture,
type, offset_vec);
}
}
}
StoreSparse(ctx, sparse_inst);
}
void EmitImageSampleDrefExplicitLod(EmitContext& ctx, IR::Inst& inst, const IR::Value& index,
const IR::Value& coord, ScalarF32 dref, ScalarF32 lod,
const IR::Value& offset) {
const auto info{inst.Flags<IR::TextureInstInfo>()};
const auto sparse_inst{inst.GetAssociatedPseudoOperation(IR::Opcode::GetSparseFromOp)};
const std::string_view sparse_mod{sparse_inst ? ".SPARSE" : ""};
const std::string_view type{TextureType(info)};
const std::string texture{Texture(ctx, info, index)};
const std::string offset_vec{Offset(ctx, offset)};
const auto [coord_vec, coord_alloc]{Coord(ctx, coord)};
const Register ret{ctx.reg_alloc.Define(inst)};
switch (info.type) {
case TextureType::Color1D:
case TextureType::ColorArray1D:
case TextureType::Color2D:
ctx.Add("MOV.F {}.z,{};"
"MOV.F {}.w,{};"
"TXL.F{} {},{},{},{}{};",
coord_vec, dref, coord_vec, lod, sparse_mod, ret, coord_vec, texture, type,
offset_vec);
break;
case TextureType::ColorArray2D:
case TextureType::ColorCube:
ctx.Add("MOV.F {}.w,{};"
"TXL.F{} {},{},{},{},{}{};",
coord_vec, dref, sparse_mod, ret, coord_vec, lod, texture, type, offset_vec);
break;
case TextureType::ColorArrayCube: {
const ScopedRegister pair{ctx.reg_alloc};
ctx.Add("MOV.F {}.x,{};"
"MOV.F {}.y,{};"
"TXL.F{} {},{},{},{},{}{};",
pair.reg, dref, pair.reg, lod, sparse_mod, ret, coord_vec, pair.reg, texture, type,
offset_vec);
break;
}
default:
throw NotImplementedException("Invalid type {}", info.type.Value());
}
StoreSparse(ctx, sparse_inst);
}
void EmitImageGather(EmitContext& ctx, IR::Inst& inst, const IR::Value& index,
const IR::Value& coord, const IR::Value& offset, const IR::Value& offset2) {
// Allocate offsets early so they don't overwrite any consumed register
const auto [off_x, off_y]{AllocOffsetsRegs(ctx, offset2)};
const auto info{inst.Flags<IR::TextureInstInfo>()};
const char comp{"xyzw"[info.gather_component]};
const auto sparse_inst{inst.GetAssociatedPseudoOperation(IR::Opcode::GetSparseFromOp)};
const std::string_view sparse_mod{sparse_inst ? ".SPARSE" : ""};
const std::string_view type{TextureType(info)};
const std::string texture{Texture(ctx, info, index)};
const Register coord_vec{ctx.reg_alloc.Consume(coord)};
const Register ret{ctx.reg_alloc.Define(inst)};
if (offset2.IsEmpty()) {
const std::string offset_vec{Offset(ctx, offset)};
ctx.Add("TXG.F{} {},{},{}.{},{}{};", sparse_mod, ret, coord_vec, texture, comp, type,
offset_vec);
} else {
SwizzleOffsets(ctx, off_x.reg, off_y.reg, offset, offset2);
ctx.Add("TXGO.F{} {},{},{},{},{}.{},{};", sparse_mod, ret, coord_vec, off_x.reg, off_y.reg,
texture, comp, type);
}
StoreSparse(ctx, sparse_inst);
}
void EmitImageGatherDref(EmitContext& ctx, IR::Inst& inst, const IR::Value& index,
const IR::Value& coord, const IR::Value& offset, const IR::Value& offset2,
const IR::Value& dref) {
// FIXME: This instruction is not working as expected
// Allocate offsets early so they don't overwrite any consumed register
const auto [off_x, off_y]{AllocOffsetsRegs(ctx, offset2)};
const auto info{inst.Flags<IR::TextureInstInfo>()};
const auto sparse_inst{inst.GetAssociatedPseudoOperation(IR::Opcode::GetSparseFromOp)};
const std::string_view sparse_mod{sparse_inst ? ".SPARSE" : ""};
const std::string_view type{TextureType(info)};
const std::string texture{Texture(ctx, info, index)};
const Register coord_vec{ctx.reg_alloc.Consume(coord)};
const ScalarF32 dref_value{ctx.reg_alloc.Consume(dref)};
const Register ret{ctx.reg_alloc.Define(inst)};
std::string args;
switch (info.type) {
case TextureType::Color2D:
ctx.Add("MOV.F {}.z,{};", coord_vec, dref_value);
args = fmt::to_string(coord_vec);
break;
case TextureType::ColorArray2D:
case TextureType::ColorCube:
ctx.Add("MOV.F {}.w,{};", coord_vec, dref_value);
args = fmt::to_string(coord_vec);
break;
case TextureType::ColorArrayCube:
args = fmt::format("{},{}", coord_vec, dref_value);
break;
default:
throw NotImplementedException("Invalid type {}", info.type.Value());
}
if (offset2.IsEmpty()) {
const std::string offset_vec{Offset(ctx, offset)};
ctx.Add("TXG.F{} {},{},{},{}{};", sparse_mod, ret, args, texture, type, offset_vec);
} else {
SwizzleOffsets(ctx, off_x.reg, off_y.reg, offset, offset2);
ctx.Add("TXGO.F{} {},{},{},{},{},{};", sparse_mod, ret, args, off_x.reg, off_y.reg, texture,
type);
}
StoreSparse(ctx, sparse_inst);
}
2021-05-19 05:05:24 +00:00
void EmitImageFetch(EmitContext& ctx, IR::Inst& inst, const IR::Value& index,
const IR::Value& coord, const IR::Value& offset, ScalarS32 lod, ScalarS32 ms) {
const auto info{inst.Flags<IR::TextureInstInfo>()};
const auto sparse_inst{inst.GetAssociatedPseudoOperation(IR::Opcode::GetSparseFromOp)};
const std::string_view sparse_mod{sparse_inst ? ".SPARSE" : ""};
const std::string_view type{TextureType(info)};
const std::string texture{Texture(ctx, info, index)};
const std::string offset_vec{Offset(ctx, offset)};
const auto [coord_vec, coord_alloc]{Coord(ctx, coord)};
const Register ret{ctx.reg_alloc.Define(inst)};
if (info.type == TextureType::Buffer) {
ctx.Add("TXF.F{} {},{},{},{}{};", sparse_mod, ret, coord_vec, texture, type, offset_vec);
} else if (ms.type != Type::Void) {
ctx.Add("MOV.S {}.w,{};"
"TXFMS.F{} {},{},{},{}{};",
coord_vec, ms, sparse_mod, ret, coord_vec, texture, type, offset_vec);
} else {
ctx.Add("MOV.S {}.w,{};"
"TXF.F{} {},{},{},{}{};",
coord_vec, lod, sparse_mod, ret, coord_vec, texture, type, offset_vec);
}
StoreSparse(ctx, sparse_inst);
}
void EmitImageQueryDimensions(EmitContext& ctx, IR::Inst& inst, const IR::Value& index,
ScalarF32 lod) {
const auto info{inst.Flags<IR::TextureInstInfo>()};
const std::string texture{Texture(ctx, info, index)};
const std::string_view type{TextureType(info)};
ctx.Add("TXQ {},{},{},{};", inst, lod, texture, type);
}
2021-05-19 05:12:38 +00:00
void EmitImageQueryLod(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, Register coord) {
const auto info{inst.Flags<IR::TextureInstInfo>()};
const std::string texture{Texture(ctx, info, index)};
const std::string_view type{TextureType(info)};
ctx.Add("LOD.F {},{},{},{};", inst, coord, texture, type);
}
void EmitImageGradient([[maybe_unused]] EmitContext& ctx, [[maybe_unused]] IR::Inst& inst,
[[maybe_unused]] const IR::Value& index, [[maybe_unused]] Register coord,
[[maybe_unused]] Register derivates, [[maybe_unused]] Register offset,
[[maybe_unused]] Register lod_clamp) {
throw NotImplementedException("GLASM instruction");
}
void EmitImageRead([[maybe_unused]] EmitContext& ctx, [[maybe_unused]] IR::Inst& inst,
[[maybe_unused]] const IR::Value& index, [[maybe_unused]] Register coord) {
throw NotImplementedException("GLASM instruction");
}
void EmitImageWrite([[maybe_unused]] EmitContext& ctx, [[maybe_unused]] IR::Inst& inst,
[[maybe_unused]] const IR::Value& index, [[maybe_unused]] Register coord,
[[maybe_unused]] Register color) {
throw NotImplementedException("GLASM instruction");
}
void EmitBindlessImageSampleImplicitLod(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageSampleExplicitLod(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageSampleDrefImplicitLod(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageSampleDrefExplicitLod(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageGather(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageGatherDref(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageFetch(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageQueryDimensions(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageQueryLod(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageGradient(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageRead(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageWrite(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageSampleImplicitLod(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageSampleExplicitLod(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageSampleDrefImplicitLod(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageSampleDrefExplicitLod(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageGather(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageGatherDref(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageFetch(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageQueryDimensions(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageQueryLod(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageGradient(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageRead(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageWrite(EmitContext&) {
throw LogicError("Unreachable instruction");
}
} // namespace Shader::Backend::GLASM