cdb240f3d4
[REUSE] is a specification that aims at making file copyright
information consistent, so that it can be both human and machine
readable. It basically requires that all files have a header containing
copyright and licensing information. When this isn't possible, like
when dealing with binary assets, generated files or embedded third-party
dependencies, it is permitted to insert copyright information in the
`.reuse/dep5` file.
Oh, and it also requires that all the licenses used in the project are
present in the `LICENSES` folder, that's why the diff is so huge.
This can be done automatically with `reuse download --all`.
The `reuse` tool also contains a handy subcommand that analyzes the
project and tells whether or not the project is (still) compliant,
`reuse lint`.
Following REUSE has a few advantages over the current approach:
- Copyright information is easy to access for users / downstream
- Files like `dist/license.md` do not need to exist anymore, as
`.reuse/dep5` is used instead
- `reuse lint` makes it easy to ensure that copyright information of
files like binary assets / images is always accurate and up to date
To add copyright information of files that didn't have it I looked up
who committed what and when, for each file. As yuzu contributors do not
have to sign a CLA or similar I couldn't assume that copyright ownership
was of the "yuzu Emulator Project", so I used the name and/or email of
the commit author instead.
[REUSE]: https://reuse.software
Follow-up to 01cf05bc75
480 lines
18 KiB
C++
480 lines
18 KiB
C++
// SPDX-FileCopyrightText: 2014 Citra Emulator Project
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
#pragma once
|
|
|
|
#include <cstddef>
|
|
#include <memory>
|
|
#include <string>
|
|
#include "common/common_types.h"
|
|
|
|
namespace Common {
|
|
struct PageTable;
|
|
}
|
|
|
|
namespace Core {
|
|
class System;
|
|
}
|
|
|
|
namespace Kernel {
|
|
class PhysicalMemory;
|
|
class KProcess;
|
|
} // namespace Kernel
|
|
|
|
namespace Core::Memory {
|
|
|
|
/**
|
|
* Page size used by the ARM architecture. This is the smallest granularity with which memory can
|
|
* be mapped.
|
|
*/
|
|
constexpr std::size_t PAGE_BITS = 12;
|
|
constexpr u64 PAGE_SIZE = 1ULL << PAGE_BITS;
|
|
constexpr u64 PAGE_MASK = PAGE_SIZE - 1;
|
|
|
|
/// Virtual user-space memory regions
|
|
enum : VAddr {
|
|
/// TLS (Thread-Local Storage) related.
|
|
TLS_ENTRY_SIZE = 0x200,
|
|
|
|
/// Application stack
|
|
DEFAULT_STACK_SIZE = 0x100000,
|
|
};
|
|
|
|
/// Central class that handles all memory operations and state.
|
|
class Memory {
|
|
public:
|
|
explicit Memory(Core::System& system);
|
|
~Memory();
|
|
|
|
Memory(const Memory&) = delete;
|
|
Memory& operator=(const Memory&) = delete;
|
|
|
|
Memory(Memory&&) = default;
|
|
Memory& operator=(Memory&&) = delete;
|
|
|
|
/**
|
|
* Resets the state of the Memory system.
|
|
*/
|
|
void Reset();
|
|
|
|
/**
|
|
* Changes the currently active page table to that of the given process instance.
|
|
*
|
|
* @param process The process to use the page table of.
|
|
*/
|
|
void SetCurrentPageTable(Kernel::KProcess& process, u32 core_id);
|
|
|
|
/**
|
|
* Maps an allocated buffer onto a region of the emulated process address space.
|
|
*
|
|
* @param page_table The page table of the emulated process.
|
|
* @param base The address to start mapping at. Must be page-aligned.
|
|
* @param size The amount of bytes to map. Must be page-aligned.
|
|
* @param target Buffer with the memory backing the mapping. Must be of length at least
|
|
* `size`.
|
|
*/
|
|
void MapMemoryRegion(Common::PageTable& page_table, VAddr base, u64 size, PAddr target);
|
|
|
|
/**
|
|
* Unmaps a region of the emulated process address space.
|
|
*
|
|
* @param page_table The page table of the emulated process.
|
|
* @param base The address to begin unmapping at.
|
|
* @param size The amount of bytes to unmap.
|
|
*/
|
|
void UnmapRegion(Common::PageTable& page_table, VAddr base, u64 size);
|
|
|
|
/**
|
|
* Checks whether or not the supplied address is a valid virtual
|
|
* address for the current process.
|
|
*
|
|
* @param vaddr The virtual address to check the validity of.
|
|
*
|
|
* @returns True if the given virtual address is valid, false otherwise.
|
|
*/
|
|
[[nodiscard]] bool IsValidVirtualAddress(VAddr vaddr) const;
|
|
|
|
/**
|
|
* Checks whether or not the supplied range of addresses are all valid
|
|
* virtual addresses for the current process.
|
|
*
|
|
* @param base The address to begin checking.
|
|
* @param size The amount of bytes to check.
|
|
*
|
|
* @returns True if all bytes in the given range are valid, false otherwise.
|
|
*/
|
|
[[nodiscard]] bool IsValidVirtualAddressRange(VAddr base, u64 size) const;
|
|
|
|
/**
|
|
* Gets a pointer to the given address.
|
|
*
|
|
* @param vaddr Virtual address to retrieve a pointer to.
|
|
*
|
|
* @returns The pointer to the given address, if the address is valid.
|
|
* If the address is not valid, nullptr will be returned.
|
|
*/
|
|
u8* GetPointer(VAddr vaddr);
|
|
|
|
template <typename T>
|
|
T* GetPointer(VAddr vaddr) {
|
|
return reinterpret_cast<T*>(GetPointer(vaddr));
|
|
}
|
|
|
|
/**
|
|
* Gets a pointer to the given address.
|
|
*
|
|
* @param vaddr Virtual address to retrieve a pointer to.
|
|
*
|
|
* @returns The pointer to the given address, if the address is valid.
|
|
* If the address is not valid, nullptr will be returned.
|
|
*/
|
|
[[nodiscard]] const u8* GetPointer(VAddr vaddr) const;
|
|
|
|
template <typename T>
|
|
const T* GetPointer(VAddr vaddr) const {
|
|
return reinterpret_cast<T*>(GetPointer(vaddr));
|
|
}
|
|
|
|
/**
|
|
* Reads an 8-bit unsigned value from the current process' address space
|
|
* at the given virtual address.
|
|
*
|
|
* @param addr The virtual address to read the 8-bit value from.
|
|
*
|
|
* @returns the read 8-bit unsigned value.
|
|
*/
|
|
u8 Read8(VAddr addr);
|
|
|
|
/**
|
|
* Reads a 16-bit unsigned value from the current process' address space
|
|
* at the given virtual address.
|
|
*
|
|
* @param addr The virtual address to read the 16-bit value from.
|
|
*
|
|
* @returns the read 16-bit unsigned value.
|
|
*/
|
|
u16 Read16(VAddr addr);
|
|
|
|
/**
|
|
* Reads a 32-bit unsigned value from the current process' address space
|
|
* at the given virtual address.
|
|
*
|
|
* @param addr The virtual address to read the 32-bit value from.
|
|
*
|
|
* @returns the read 32-bit unsigned value.
|
|
*/
|
|
u32 Read32(VAddr addr);
|
|
|
|
/**
|
|
* Reads a 64-bit unsigned value from the current process' address space
|
|
* at the given virtual address.
|
|
*
|
|
* @param addr The virtual address to read the 64-bit value from.
|
|
*
|
|
* @returns the read 64-bit value.
|
|
*/
|
|
u64 Read64(VAddr addr);
|
|
|
|
/**
|
|
* Writes an 8-bit unsigned integer to the given virtual address in
|
|
* the current process' address space.
|
|
*
|
|
* @param addr The virtual address to write the 8-bit unsigned integer to.
|
|
* @param data The 8-bit unsigned integer to write to the given virtual address.
|
|
*
|
|
* @post The memory at the given virtual address contains the specified data value.
|
|
*/
|
|
void Write8(VAddr addr, u8 data);
|
|
|
|
/**
|
|
* Writes a 16-bit unsigned integer to the given virtual address in
|
|
* the current process' address space.
|
|
*
|
|
* @param addr The virtual address to write the 16-bit unsigned integer to.
|
|
* @param data The 16-bit unsigned integer to write to the given virtual address.
|
|
*
|
|
* @post The memory range [addr, sizeof(data)) contains the given data value.
|
|
*/
|
|
void Write16(VAddr addr, u16 data);
|
|
|
|
/**
|
|
* Writes a 32-bit unsigned integer to the given virtual address in
|
|
* the current process' address space.
|
|
*
|
|
* @param addr The virtual address to write the 32-bit unsigned integer to.
|
|
* @param data The 32-bit unsigned integer to write to the given virtual address.
|
|
*
|
|
* @post The memory range [addr, sizeof(data)) contains the given data value.
|
|
*/
|
|
void Write32(VAddr addr, u32 data);
|
|
|
|
/**
|
|
* Writes a 64-bit unsigned integer to the given virtual address in
|
|
* the current process' address space.
|
|
*
|
|
* @param addr The virtual address to write the 64-bit unsigned integer to.
|
|
* @param data The 64-bit unsigned integer to write to the given virtual address.
|
|
*
|
|
* @post The memory range [addr, sizeof(data)) contains the given data value.
|
|
*/
|
|
void Write64(VAddr addr, u64 data);
|
|
|
|
/**
|
|
* Writes a 8-bit unsigned integer to the given virtual address in
|
|
* the current process' address space if and only if the address contains
|
|
* the expected value. This operation is atomic.
|
|
*
|
|
* @param addr The virtual address to write the 8-bit unsigned integer to.
|
|
* @param data The 8-bit unsigned integer to write to the given virtual address.
|
|
* @param expected The 8-bit unsigned integer to check against the given virtual address.
|
|
*
|
|
* @post The memory range [addr, sizeof(data)) contains the given data value.
|
|
*/
|
|
bool WriteExclusive8(VAddr addr, u8 data, u8 expected);
|
|
|
|
/**
|
|
* Writes a 16-bit unsigned integer to the given virtual address in
|
|
* the current process' address space if and only if the address contains
|
|
* the expected value. This operation is atomic.
|
|
*
|
|
* @param addr The virtual address to write the 16-bit unsigned integer to.
|
|
* @param data The 16-bit unsigned integer to write to the given virtual address.
|
|
* @param expected The 16-bit unsigned integer to check against the given virtual address.
|
|
*
|
|
* @post The memory range [addr, sizeof(data)) contains the given data value.
|
|
*/
|
|
bool WriteExclusive16(VAddr addr, u16 data, u16 expected);
|
|
|
|
/**
|
|
* Writes a 32-bit unsigned integer to the given virtual address in
|
|
* the current process' address space if and only if the address contains
|
|
* the expected value. This operation is atomic.
|
|
*
|
|
* @param addr The virtual address to write the 32-bit unsigned integer to.
|
|
* @param data The 32-bit unsigned integer to write to the given virtual address.
|
|
* @param expected The 32-bit unsigned integer to check against the given virtual address.
|
|
*
|
|
* @post The memory range [addr, sizeof(data)) contains the given data value.
|
|
*/
|
|
bool WriteExclusive32(VAddr addr, u32 data, u32 expected);
|
|
|
|
/**
|
|
* Writes a 64-bit unsigned integer to the given virtual address in
|
|
* the current process' address space if and only if the address contains
|
|
* the expected value. This operation is atomic.
|
|
*
|
|
* @param addr The virtual address to write the 64-bit unsigned integer to.
|
|
* @param data The 64-bit unsigned integer to write to the given virtual address.
|
|
* @param expected The 64-bit unsigned integer to check against the given virtual address.
|
|
*
|
|
* @post The memory range [addr, sizeof(data)) contains the given data value.
|
|
*/
|
|
bool WriteExclusive64(VAddr addr, u64 data, u64 expected);
|
|
|
|
/**
|
|
* Writes a 128-bit unsigned integer to the given virtual address in
|
|
* the current process' address space if and only if the address contains
|
|
* the expected value. This operation is atomic.
|
|
*
|
|
* @param addr The virtual address to write the 128-bit unsigned integer to.
|
|
* @param data The 128-bit unsigned integer to write to the given virtual address.
|
|
* @param expected The 128-bit unsigned integer to check against the given virtual address.
|
|
*
|
|
* @post The memory range [addr, sizeof(data)) contains the given data value.
|
|
*/
|
|
bool WriteExclusive128(VAddr addr, u128 data, u128 expected);
|
|
|
|
/**
|
|
* Reads a null-terminated string from the given virtual address.
|
|
* This function will continually read characters until either:
|
|
*
|
|
* - A null character ('\0') is reached.
|
|
* - max_length characters have been read.
|
|
*
|
|
* @note The final null-terminating character (if found) is not included
|
|
* in the returned string.
|
|
*
|
|
* @param vaddr The address to begin reading the string from.
|
|
* @param max_length The maximum length of the string to read in characters.
|
|
*
|
|
* @returns The read string.
|
|
*/
|
|
std::string ReadCString(VAddr vaddr, std::size_t max_length);
|
|
|
|
/**
|
|
* Reads a contiguous block of bytes from a specified process' address space.
|
|
*
|
|
* @param process The process to read the data from.
|
|
* @param src_addr The virtual address to begin reading from.
|
|
* @param dest_buffer The buffer to place the read bytes into.
|
|
* @param size The amount of data to read, in bytes.
|
|
*
|
|
* @note If a size of 0 is specified, then this function reads nothing and
|
|
* no attempts to access memory are made at all.
|
|
*
|
|
* @pre dest_buffer must be at least size bytes in length, otherwise a
|
|
* buffer overrun will occur.
|
|
*
|
|
* @post The range [dest_buffer, size) contains the read bytes from the
|
|
* process' address space.
|
|
*/
|
|
void ReadBlock(const Kernel::KProcess& process, VAddr src_addr, void* dest_buffer,
|
|
std::size_t size);
|
|
|
|
/**
|
|
* Reads a contiguous block of bytes from the current process' address space.
|
|
*
|
|
* @param src_addr The virtual address to begin reading from.
|
|
* @param dest_buffer The buffer to place the read bytes into.
|
|
* @param size The amount of data to read, in bytes.
|
|
*
|
|
* @note If a size of 0 is specified, then this function reads nothing and
|
|
* no attempts to access memory are made at all.
|
|
*
|
|
* @pre dest_buffer must be at least size bytes in length, otherwise a
|
|
* buffer overrun will occur.
|
|
*
|
|
* @post The range [dest_buffer, size) contains the read bytes from the
|
|
* current process' address space.
|
|
*/
|
|
void ReadBlock(VAddr src_addr, void* dest_buffer, std::size_t size);
|
|
|
|
/**
|
|
* Reads a contiguous block of bytes from the current process' address space.
|
|
* This unsafe version does not trigger GPU flushing.
|
|
*
|
|
* @param src_addr The virtual address to begin reading from.
|
|
* @param dest_buffer The buffer to place the read bytes into.
|
|
* @param size The amount of data to read, in bytes.
|
|
*
|
|
* @note If a size of 0 is specified, then this function reads nothing and
|
|
* no attempts to access memory are made at all.
|
|
*
|
|
* @pre dest_buffer must be at least size bytes in length, otherwise a
|
|
* buffer overrun will occur.
|
|
*
|
|
* @post The range [dest_buffer, size) contains the read bytes from the
|
|
* current process' address space.
|
|
*/
|
|
void ReadBlockUnsafe(VAddr src_addr, void* dest_buffer, std::size_t size);
|
|
|
|
/**
|
|
* Writes a range of bytes into a given process' address space at the specified
|
|
* virtual address.
|
|
*
|
|
* @param process The process to write data into the address space of.
|
|
* @param dest_addr The destination virtual address to begin writing the data at.
|
|
* @param src_buffer The data to write into the process' address space.
|
|
* @param size The size of the data to write, in bytes.
|
|
*
|
|
* @post The address range [dest_addr, size) in the process' address space
|
|
* contains the data that was within src_buffer.
|
|
*
|
|
* @post If an attempt is made to write into an unmapped region of memory, the writes
|
|
* will be ignored and an error will be logged.
|
|
*
|
|
* @post If a write is performed into a region of memory that is considered cached
|
|
* rasterizer memory, will cause the currently active rasterizer to be notified
|
|
* and will mark that region as invalidated to caches that the active
|
|
* graphics backend may be maintaining over the course of execution.
|
|
*/
|
|
void WriteBlock(const Kernel::KProcess& process, VAddr dest_addr, const void* src_buffer,
|
|
std::size_t size);
|
|
|
|
/**
|
|
* Writes a range of bytes into the current process' address space at the specified
|
|
* virtual address.
|
|
*
|
|
* @param dest_addr The destination virtual address to begin writing the data at.
|
|
* @param src_buffer The data to write into the current process' address space.
|
|
* @param size The size of the data to write, in bytes.
|
|
*
|
|
* @post The address range [dest_addr, size) in the current process' address space
|
|
* contains the data that was within src_buffer.
|
|
*
|
|
* @post If an attempt is made to write into an unmapped region of memory, the writes
|
|
* will be ignored and an error will be logged.
|
|
*
|
|
* @post If a write is performed into a region of memory that is considered cached
|
|
* rasterizer memory, will cause the currently active rasterizer to be notified
|
|
* and will mark that region as invalidated to caches that the active
|
|
* graphics backend may be maintaining over the course of execution.
|
|
*/
|
|
void WriteBlock(VAddr dest_addr, const void* src_buffer, std::size_t size);
|
|
|
|
/**
|
|
* Writes a range of bytes into the current process' address space at the specified
|
|
* virtual address.
|
|
* This unsafe version does not invalidate GPU Memory.
|
|
*
|
|
* @param dest_addr The destination virtual address to begin writing the data at.
|
|
* @param src_buffer The data to write into the current process' address space.
|
|
* @param size The size of the data to write, in bytes.
|
|
*
|
|
* @post The address range [dest_addr, size) in the current process' address space
|
|
* contains the data that was within src_buffer.
|
|
*
|
|
* @post If an attempt is made to write into an unmapped region of memory, the writes
|
|
* will be ignored and an error will be logged.
|
|
*
|
|
*/
|
|
void WriteBlockUnsafe(VAddr dest_addr, const void* src_buffer, std::size_t size);
|
|
|
|
/**
|
|
* Copies data within a process' address space to another location within the
|
|
* same address space.
|
|
*
|
|
* @param process The process that will have data copied within its address space.
|
|
* @param dest_addr The destination virtual address to begin copying the data into.
|
|
* @param src_addr The source virtual address to begin copying the data from.
|
|
* @param size The size of the data to copy, in bytes.
|
|
*
|
|
* @post The range [dest_addr, size) within the process' address space contains the
|
|
* same data within the range [src_addr, size).
|
|
*/
|
|
void CopyBlock(const Kernel::KProcess& process, VAddr dest_addr, VAddr src_addr,
|
|
std::size_t size);
|
|
|
|
/**
|
|
* Zeros a range of bytes within the current process' address space at the specified
|
|
* virtual address.
|
|
*
|
|
* @param process The process that will have data zeroed within its address space.
|
|
* @param dest_addr The destination virtual address to zero the data from.
|
|
* @param size The size of the range to zero out, in bytes.
|
|
*
|
|
* @post The range [dest_addr, size) within the process' address space contains the
|
|
* value 0.
|
|
*/
|
|
void ZeroBlock(const Kernel::KProcess& process, VAddr dest_addr, std::size_t size);
|
|
|
|
/**
|
|
* Marks each page within the specified address range as cached or uncached.
|
|
*
|
|
* @param vaddr The virtual address indicating the start of the address range.
|
|
* @param size The size of the address range in bytes.
|
|
* @param cached Whether or not any pages within the address range should be
|
|
* marked as cached or uncached.
|
|
*/
|
|
void RasterizerMarkRegionCached(VAddr vaddr, u64 size, bool cached);
|
|
|
|
/**
|
|
* Marks each page within the specified address range as debug or non-debug.
|
|
* Debug addresses are not accessible from fastmem pointers.
|
|
*
|
|
* @param vaddr The virtual address indicating the start of the address range.
|
|
* @param size The size of the address range in bytes.
|
|
* @param debug Whether or not any pages within the address range should be
|
|
* marked as debug or non-debug.
|
|
*/
|
|
void MarkRegionDebug(VAddr vaddr, u64 size, bool debug);
|
|
|
|
private:
|
|
Core::System& system;
|
|
|
|
struct Impl;
|
|
std::unique_ptr<Impl> impl;
|
|
};
|
|
|
|
} // namespace Core::Memory
|