yuzu/src/core/hle/kernel/process.cpp
Lioncash 366985ca92 vm_manager: Amend MemoryState enum members
Amends the MemoryState enum to use the same values like the actual
kernel does. Also provides the necessary operators to operate on them.
This will be necessary in the future for implementing
svcSetMemoryAttribute, as memory block state is checked before applying
the attribute.
2018-12-12 14:03:50 -05:00

309 lines
11 KiB
C++

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <memory>
#include <random>
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/file_sys/program_metadata.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/memory.h"
#include "core/settings.h"
namespace Kernel {
CodeSet::CodeSet() = default;
CodeSet::~CodeSet() = default;
SharedPtr<Process> Process::Create(KernelCore& kernel, std::string&& name) {
SharedPtr<Process> process(new Process(kernel));
process->name = std::move(name);
process->flags.raw = 0;
process->flags.memory_region.Assign(MemoryRegion::APPLICATION);
process->resource_limit = kernel.GetSystemResourceLimit();
process->status = ProcessStatus::Created;
process->program_id = 0;
process->process_id = kernel.CreateNewProcessID();
process->svc_access_mask.set();
std::mt19937 rng(Settings::values.rng_seed.value_or(0));
std::uniform_int_distribution<u64> distribution;
std::generate(process->random_entropy.begin(), process->random_entropy.end(),
[&] { return distribution(rng); });
kernel.AppendNewProcess(process);
return process;
}
SharedPtr<ResourceLimit> Process::GetResourceLimit() const {
return resource_limit;
}
ResultCode Process::ClearSignalState() {
if (status == ProcessStatus::Exited) {
LOG_ERROR(Kernel, "called on a terminated process instance.");
return ERR_INVALID_STATE;
}
if (!is_signaled) {
LOG_ERROR(Kernel, "called on a process instance that isn't signaled.");
return ERR_INVALID_STATE;
}
is_signaled = false;
return RESULT_SUCCESS;
}
void Process::LoadFromMetadata(const FileSys::ProgramMetadata& metadata) {
program_id = metadata.GetTitleID();
ideal_processor = metadata.GetMainThreadCore();
is_64bit_process = metadata.Is64BitProgram();
vm_manager.Reset(metadata.GetAddressSpaceType());
}
void Process::ParseKernelCaps(const u32* kernel_caps, std::size_t len) {
for (std::size_t i = 0; i < len; ++i) {
u32 descriptor = kernel_caps[i];
u32 type = descriptor >> 20;
if (descriptor == 0xFFFFFFFF) {
// Unused descriptor entry
continue;
} else if ((type & 0xF00) == 0xE00) { // 0x0FFF
// Allowed interrupts list
LOG_WARNING(Loader, "ExHeader allowed interrupts list ignored");
} else if ((type & 0xF80) == 0xF00) { // 0x07FF
// Allowed syscalls mask
unsigned int index = ((descriptor >> 24) & 7) * 24;
u32 bits = descriptor & 0xFFFFFF;
while (bits && index < svc_access_mask.size()) {
svc_access_mask.set(index, bits & 1);
++index;
bits >>= 1;
}
} else if ((type & 0xFF0) == 0xFE0) { // 0x00FF
// Handle table size
handle_table_size = descriptor & 0x3FF;
} else if ((type & 0xFF8) == 0xFF0) { // 0x007F
// Misc. flags
flags.raw = descriptor & 0xFFFF;
} else if ((type & 0xFFE) == 0xFF8) { // 0x001F
// Mapped memory range
if (i + 1 >= len || ((kernel_caps[i + 1] >> 20) & 0xFFE) != 0xFF8) {
LOG_WARNING(Loader, "Incomplete exheader memory range descriptor ignored.");
continue;
}
u32 end_desc = kernel_caps[i + 1];
++i; // Skip over the second descriptor on the next iteration
AddressMapping mapping;
mapping.address = descriptor << 12;
VAddr end_address = end_desc << 12;
if (mapping.address < end_address) {
mapping.size = end_address - mapping.address;
} else {
mapping.size = 0;
}
mapping.read_only = (descriptor & (1 << 20)) != 0;
mapping.unk_flag = (end_desc & (1 << 20)) != 0;
address_mappings.push_back(mapping);
} else if ((type & 0xFFF) == 0xFFE) { // 0x000F
// Mapped memory page
AddressMapping mapping;
mapping.address = descriptor << 12;
mapping.size = Memory::PAGE_SIZE;
mapping.read_only = false;
mapping.unk_flag = false;
address_mappings.push_back(mapping);
} else if ((type & 0xFE0) == 0xFC0) { // 0x01FF
// Kernel version
kernel_version = descriptor & 0xFFFF;
int minor = kernel_version & 0xFF;
int major = (kernel_version >> 8) & 0xFF;
LOG_INFO(Loader, "ExHeader kernel version: {}.{}", major, minor);
} else {
LOG_ERROR(Loader, "Unhandled kernel caps descriptor: 0x{:08X}", descriptor);
}
}
}
void Process::Run(VAddr entry_point, s32 main_thread_priority, u32 stack_size) {
// Allocate and map the main thread stack
// TODO(bunnei): This is heap area that should be allocated by the kernel and not mapped as part
// of the user address space.
vm_manager
.MapMemoryBlock(vm_manager.GetTLSIORegionEndAddress() - stack_size,
std::make_shared<std::vector<u8>>(stack_size, 0), 0, stack_size,
MemoryState::Stack)
.Unwrap();
vm_manager.LogLayout();
ChangeStatus(ProcessStatus::Running);
Kernel::SetupMainThread(kernel, entry_point, main_thread_priority, *this);
}
void Process::PrepareForTermination() {
ChangeStatus(ProcessStatus::Exiting);
const auto stop_threads = [this](const std::vector<SharedPtr<Thread>>& thread_list) {
for (auto& thread : thread_list) {
if (thread->GetOwnerProcess() != this)
continue;
if (thread == GetCurrentThread())
continue;
// TODO(Subv): When are the other running/ready threads terminated?
ASSERT_MSG(thread->GetStatus() == ThreadStatus::WaitSynchAny ||
thread->GetStatus() == ThreadStatus::WaitSynchAll,
"Exiting processes with non-waiting threads is currently unimplemented");
thread->Stop();
}
};
const auto& system = Core::System::GetInstance();
stop_threads(system.Scheduler(0).GetThreadList());
stop_threads(system.Scheduler(1).GetThreadList());
stop_threads(system.Scheduler(2).GetThreadList());
stop_threads(system.Scheduler(3).GetThreadList());
ChangeStatus(ProcessStatus::Exited);
}
/**
* Finds a free location for the TLS section of a thread.
* @param tls_slots The TLS page array of the thread's owner process.
* Returns a tuple of (page, slot, alloc_needed) where:
* page: The index of the first allocated TLS page that has free slots.
* slot: The index of the first free slot in the indicated page.
* alloc_needed: Whether there's a need to allocate a new TLS page (All pages are full).
*/
static std::tuple<std::size_t, std::size_t, bool> FindFreeThreadLocalSlot(
const std::vector<std::bitset<8>>& tls_slots) {
// Iterate over all the allocated pages, and try to find one where not all slots are used.
for (std::size_t page = 0; page < tls_slots.size(); ++page) {
const auto& page_tls_slots = tls_slots[page];
if (!page_tls_slots.all()) {
// We found a page with at least one free slot, find which slot it is
for (std::size_t slot = 0; slot < page_tls_slots.size(); ++slot) {
if (!page_tls_slots.test(slot)) {
return std::make_tuple(page, slot, false);
}
}
}
}
return std::make_tuple(0, 0, true);
}
VAddr Process::MarkNextAvailableTLSSlotAsUsed(Thread& thread) {
auto [available_page, available_slot, needs_allocation] = FindFreeThreadLocalSlot(tls_slots);
const VAddr tls_begin = vm_manager.GetTLSIORegionBaseAddress();
if (needs_allocation) {
tls_slots.emplace_back(0); // The page is completely available at the start
available_page = tls_slots.size() - 1;
available_slot = 0; // Use the first slot in the new page
// Allocate some memory from the end of the linear heap for this region.
auto& tls_memory = thread.GetTLSMemory();
tls_memory->insert(tls_memory->end(), Memory::PAGE_SIZE, 0);
vm_manager.RefreshMemoryBlockMappings(tls_memory.get());
vm_manager.MapMemoryBlock(tls_begin + available_page * Memory::PAGE_SIZE, tls_memory, 0,
Memory::PAGE_SIZE, MemoryState::ThreadLocal);
}
tls_slots[available_page].set(available_slot);
return tls_begin + available_page * Memory::PAGE_SIZE + available_slot * Memory::TLS_ENTRY_SIZE;
}
void Process::FreeTLSSlot(VAddr tls_address) {
const VAddr tls_base = tls_address - vm_manager.GetTLSIORegionBaseAddress();
const VAddr tls_page = tls_base / Memory::PAGE_SIZE;
const VAddr tls_slot = (tls_base % Memory::PAGE_SIZE) / Memory::TLS_ENTRY_SIZE;
tls_slots[tls_page].reset(tls_slot);
}
void Process::LoadModule(CodeSet module_, VAddr base_addr) {
const auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions,
MemoryState memory_state) {
const auto vma = vm_manager
.MapMemoryBlock(segment.addr + base_addr, module_.memory,
segment.offset, segment.size, memory_state)
.Unwrap();
vm_manager.Reprotect(vma, permissions);
};
// Map CodeSet segments
MapSegment(module_.CodeSegment(), VMAPermission::ReadExecute, MemoryState::CodeStatic);
MapSegment(module_.RODataSegment(), VMAPermission::Read, MemoryState::CodeMutable);
MapSegment(module_.DataSegment(), VMAPermission::ReadWrite, MemoryState::CodeMutable);
// Clear instruction cache in CPU JIT
Core::System::GetInstance().ArmInterface(0).ClearInstructionCache();
Core::System::GetInstance().ArmInterface(1).ClearInstructionCache();
Core::System::GetInstance().ArmInterface(2).ClearInstructionCache();
Core::System::GetInstance().ArmInterface(3).ClearInstructionCache();
}
ResultVal<VAddr> Process::HeapAllocate(VAddr target, u64 size, VMAPermission perms) {
return vm_manager.HeapAllocate(target, size, perms);
}
ResultCode Process::HeapFree(VAddr target, u32 size) {
return vm_manager.HeapFree(target, size);
}
ResultCode Process::MirrorMemory(VAddr dst_addr, VAddr src_addr, u64 size, MemoryState state) {
return vm_manager.MirrorMemory(dst_addr, src_addr, size, state);
}
ResultCode Process::UnmapMemory(VAddr dst_addr, VAddr /*src_addr*/, u64 size) {
return vm_manager.UnmapRange(dst_addr, size);
}
Kernel::Process::Process(KernelCore& kernel) : WaitObject{kernel} {}
Kernel::Process::~Process() {}
void Process::Acquire(Thread* thread) {
ASSERT_MSG(!ShouldWait(thread), "Object unavailable!");
}
bool Process::ShouldWait(Thread* thread) const {
return !is_signaled;
}
void Process::ChangeStatus(ProcessStatus new_status) {
if (status == new_status) {
return;
}
status = new_status;
is_signaled = true;
WakeupAllWaitingThreads();
}
} // namespace Kernel