yuzu/src/core/hle/kernel/k_scheduler.cpp
2023-10-21 20:03:41 -04:00

910 lines
37 KiB
C++

// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <bit>
#include "common/assert.h"
#include "common/bit_util.h"
#include "common/fiber.h"
#include "common/logging/log.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/cpu_manager.h"
#include "core/hle/kernel/k_interrupt_manager.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/physical_core.h"
namespace Kernel {
static void IncrementScheduledCount(Kernel::KThread* thread) {
if (auto process = thread->GetOwnerProcess(); process) {
process->IncrementScheduledCount();
}
}
KScheduler::KScheduler(KernelCore& kernel) : m_kernel{kernel} {
m_switch_fiber = std::make_shared<Common::Fiber>([this] {
while (true) {
ScheduleImplFiber();
}
});
m_state.needs_scheduling = true;
}
KScheduler::~KScheduler() = default;
void KScheduler::SetInterruptTaskRunnable() {
m_state.interrupt_task_runnable = true;
m_state.needs_scheduling = true;
}
void KScheduler::RequestScheduleOnInterrupt() {
m_state.needs_scheduling = true;
if (CanSchedule(m_kernel)) {
ScheduleOnInterrupt();
}
}
void KScheduler::DisableScheduling(KernelCore& kernel) {
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() >= 0);
GetCurrentThread(kernel).DisableDispatch();
}
void KScheduler::EnableScheduling(KernelCore& kernel, u64 cores_needing_scheduling) {
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() >= 1);
auto* scheduler{kernel.CurrentScheduler()};
if (!scheduler || kernel.IsPhantomModeForSingleCore()) {
KScheduler::RescheduleCores(kernel, cores_needing_scheduling);
KScheduler::RescheduleCurrentHLEThread(kernel);
return;
}
scheduler->RescheduleOtherCores(cores_needing_scheduling);
if (GetCurrentThread(kernel).GetDisableDispatchCount() > 1) {
GetCurrentThread(kernel).EnableDispatch();
} else {
scheduler->RescheduleCurrentCore();
}
}
void KScheduler::RescheduleCurrentHLEThread(KernelCore& kernel) {
// HACK: we cannot schedule from this thread, it is not a core thread
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() == 1);
// Ensure dummy threads that are waiting block.
GetCurrentThread(kernel).DummyThreadBeginWait();
ASSERT(GetCurrentThread(kernel).GetState() != ThreadState::Waiting);
GetCurrentThread(kernel).EnableDispatch();
}
u64 KScheduler::UpdateHighestPriorityThreads(KernelCore& kernel) {
if (IsSchedulerUpdateNeeded(kernel)) {
return UpdateHighestPriorityThreadsImpl(kernel);
} else {
return 0;
}
}
void KScheduler::Schedule() {
ASSERT(GetCurrentThread(m_kernel).GetDisableDispatchCount() == 1);
ASSERT(m_core_id == GetCurrentCoreId(m_kernel));
ScheduleImpl();
}
void KScheduler::ScheduleOnInterrupt() {
GetCurrentThread(m_kernel).DisableDispatch();
Schedule();
GetCurrentThread(m_kernel).EnableDispatch();
}
void KScheduler::PreemptSingleCore() {
GetCurrentThread(m_kernel).DisableDispatch();
auto* thread = GetCurrentThreadPointer(m_kernel);
auto& previous_scheduler = m_kernel.Scheduler(thread->GetCurrentCore());
previous_scheduler.Unload(thread);
Common::Fiber::YieldTo(thread->GetHostContext(), *m_switch_fiber);
GetCurrentThread(m_kernel).EnableDispatch();
}
void KScheduler::RescheduleCurrentCore() {
ASSERT(!m_kernel.IsPhantomModeForSingleCore());
ASSERT(GetCurrentThread(m_kernel).GetDisableDispatchCount() == 1);
GetCurrentThread(m_kernel).EnableDispatch();
if (m_state.needs_scheduling.load()) {
// Disable interrupts, and then check again if rescheduling is needed.
// KScopedInterruptDisable intr_disable;
m_kernel.CurrentScheduler()->RescheduleCurrentCoreImpl();
}
}
void KScheduler::RescheduleCurrentCoreImpl() {
// Check that scheduling is needed.
if (m_state.needs_scheduling.load()) [[likely]] {
GetCurrentThread(m_kernel).DisableDispatch();
Schedule();
GetCurrentThread(m_kernel).EnableDispatch();
}
}
void KScheduler::Initialize(KThread* main_thread, KThread* idle_thread, s32 core_id) {
// Set core ID/idle thread/interrupt task manager.
m_core_id = core_id;
m_idle_thread = idle_thread;
// m_state.idle_thread_stack = m_idle_thread->GetStackTop();
// m_state.interrupt_task_manager = std::addressof(kernel.GetInterruptTaskManager());
// Insert the main thread into the priority queue.
// {
// KScopedSchedulerLock lk{m_kernel};
// GetPriorityQueue(m_kernel).PushBack(GetCurrentThreadPointer(m_kernel));
// SetSchedulerUpdateNeeded(m_kernel);
// }
// Bind interrupt handler.
// kernel.GetInterruptManager().BindHandler(
// GetSchedulerInterruptHandler(m_kernel), KInterruptName::Scheduler, m_core_id,
// KInterruptController::PriorityLevel::Scheduler, false, false);
// Set the current thread.
m_current_thread = main_thread;
}
void KScheduler::Activate() {
ASSERT(GetCurrentThread(m_kernel).GetDisableDispatchCount() == 1);
// m_state.should_count_idle = KTargetSystem::IsDebugMode();
m_is_active = true;
RescheduleCurrentCore();
}
void KScheduler::OnThreadStart() {
GetCurrentThread(m_kernel).EnableDispatch();
}
u64 KScheduler::UpdateHighestPriorityThread(KThread* highest_thread) {
if (KThread* prev_highest_thread = m_state.highest_priority_thread;
prev_highest_thread != highest_thread) [[likely]] {
if (prev_highest_thread != nullptr) [[likely]] {
IncrementScheduledCount(prev_highest_thread);
prev_highest_thread->SetLastScheduledTick(
m_kernel.System().CoreTiming().GetClockTicks());
}
if (m_state.should_count_idle) {
if (highest_thread != nullptr) [[likely]] {
if (KProcess* process = highest_thread->GetOwnerProcess(); process != nullptr) {
process->SetRunningThread(m_core_id, highest_thread, m_state.idle_count, 0);
}
} else {
m_state.idle_count++;
}
}
m_state.highest_priority_thread = highest_thread;
m_state.needs_scheduling = true;
return (1ULL << m_core_id);
} else {
return 0;
}
}
u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) {
ASSERT(IsSchedulerLockedByCurrentThread(kernel));
// Clear that we need to update.
ClearSchedulerUpdateNeeded(kernel);
u64 cores_needing_scheduling = 0, idle_cores = 0;
KThread* top_threads[Core::Hardware::NUM_CPU_CORES];
auto& priority_queue = GetPriorityQueue(kernel);
// We want to go over all cores, finding the highest priority thread and determining if
// scheduling is needed for that core.
for (size_t core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
KThread* top_thread = priority_queue.GetScheduledFront(static_cast<s32>(core_id));
if (top_thread != nullptr) {
// We need to check if the thread's process has a pinned thread.
if (KProcess* parent = top_thread->GetOwnerProcess()) {
// Check that there's a pinned thread other than the current top thread.
if (KThread* pinned = parent->GetPinnedThread(static_cast<s32>(core_id));
pinned != nullptr && pinned != top_thread) {
// We need to prefer threads with kernel waiters to the pinned thread.
if (top_thread->GetNumKernelWaiters() ==
0 /* && top_thread != parent->GetExceptionThread() */) {
// If the pinned thread is runnable, use it.
if (pinned->GetRawState() == ThreadState::Runnable) {
top_thread = pinned;
} else {
top_thread = nullptr;
}
}
}
}
} else {
idle_cores |= (1ULL << core_id);
}
top_threads[core_id] = top_thread;
cores_needing_scheduling |=
kernel.Scheduler(core_id).UpdateHighestPriorityThread(top_threads[core_id]);
}
// Idle cores are bad. We're going to try to migrate threads to each idle core in turn.
while (idle_cores != 0) {
const s32 core_id = static_cast<s32>(std::countr_zero(idle_cores));
if (KThread* suggested = priority_queue.GetSuggestedFront(core_id); suggested != nullptr) {
s32 migration_candidates[Core::Hardware::NUM_CPU_CORES];
size_t num_candidates = 0;
// While we have a suggested thread, try to migrate it!
while (suggested != nullptr) {
// Check if the suggested thread is the top thread on its core.
const s32 suggested_core = suggested->GetActiveCore();
if (KThread* top_thread =
(suggested_core >= 0) ? top_threads[suggested_core] : nullptr;
top_thread != suggested) {
// Make sure we're not dealing with threads too high priority for migration.
if (top_thread != nullptr &&
top_thread->GetPriority() < HighestCoreMigrationAllowedPriority) {
break;
}
// The suggested thread isn't bound to its core, so we can migrate it!
suggested->SetActiveCore(core_id);
priority_queue.ChangeCore(suggested_core, suggested);
top_threads[core_id] = suggested;
cores_needing_scheduling |=
kernel.Scheduler(core_id).UpdateHighestPriorityThread(top_threads[core_id]);
break;
}
// Note this core as a candidate for migration.
ASSERT(num_candidates < Core::Hardware::NUM_CPU_CORES);
migration_candidates[num_candidates++] = suggested_core;
suggested = priority_queue.GetSuggestedNext(core_id, suggested);
}
// If suggested is nullptr, we failed to migrate a specific thread. So let's try all our
// candidate cores' top threads.
if (suggested == nullptr) {
for (size_t i = 0; i < num_candidates; i++) {
// Check if there's some other thread that can run on the candidate core.
const s32 candidate_core = migration_candidates[i];
suggested = top_threads[candidate_core];
if (KThread* next_on_candidate_core =
priority_queue.GetScheduledNext(candidate_core, suggested);
next_on_candidate_core != nullptr) {
// The candidate core can run some other thread! We'll migrate its current
// top thread to us.
top_threads[candidate_core] = next_on_candidate_core;
cores_needing_scheduling |=
kernel.Scheduler(candidate_core)
.UpdateHighestPriorityThread(top_threads[candidate_core]);
// Perform the migration.
suggested->SetActiveCore(core_id);
priority_queue.ChangeCore(candidate_core, suggested);
top_threads[core_id] = suggested;
cores_needing_scheduling |=
kernel.Scheduler(core_id).UpdateHighestPriorityThread(
top_threads[core_id]);
break;
}
}
}
}
idle_cores &= ~(1ULL << core_id);
}
// HACK: any waiting dummy threads can wake up now.
kernel.GlobalSchedulerContext().WakeupWaitingDummyThreads();
// HACK: if we are a dummy thread, and we need to go sleep, indicate
// that for when the lock is released.
KThread* const cur_thread = GetCurrentThreadPointer(kernel);
if (cur_thread->IsDummyThread() && cur_thread->GetState() != ThreadState::Runnable) {
cur_thread->RequestDummyThreadWait();
}
return cores_needing_scheduling;
}
void KScheduler::SwitchThread(KThread* next_thread) {
KProcess* const cur_process = GetCurrentProcessPointer(m_kernel);
KThread* const cur_thread = GetCurrentThreadPointer(m_kernel);
// We never want to schedule a null thread, so use the idle thread if we don't have a next.
if (next_thread == nullptr) {
next_thread = m_idle_thread;
}
if (next_thread->GetCurrentCore() != m_core_id) {
next_thread->SetCurrentCore(m_core_id);
}
// If we're not actually switching thread, there's nothing to do.
if (next_thread == cur_thread) {
return;
}
// Next thread is now known not to be nullptr, and must not be dispatchable.
ASSERT(next_thread->GetDisableDispatchCount() == 1);
ASSERT(!next_thread->IsDummyThread());
// Update the CPU time tracking variables.
const s64 prev_tick = m_last_context_switch_time;
const s64 cur_tick = m_kernel.System().CoreTiming().GetClockTicks();
const s64 tick_diff = cur_tick - prev_tick;
cur_thread->AddCpuTime(m_core_id, tick_diff);
if (cur_process != nullptr) {
cur_process->AddCpuTime(tick_diff);
}
m_last_context_switch_time = cur_tick;
// Update our previous thread.
if (cur_process != nullptr) {
if (!cur_thread->IsTerminationRequested() && cur_thread->GetActiveCore() == m_core_id)
[[likely]] {
m_state.prev_thread = cur_thread;
} else {
m_state.prev_thread = nullptr;
}
}
// Switch the current process, if we're switching processes.
// if (KProcess *next_process = next_thread->GetOwnerProcess(); next_process != cur_process) {
// KProcess::Switch(cur_process, next_process);
// }
// Set the new thread.
SetCurrentThread(m_kernel, next_thread);
m_current_thread = next_thread;
// Set the new Thread Local region.
// cpu::SwitchThreadLocalRegion(GetInteger(next_thread->GetThreadLocalRegionAddress()));
}
void KScheduler::ScheduleImpl() {
// First, clear the needs scheduling bool.
m_state.needs_scheduling.store(false, std::memory_order_relaxed);
std::atomic_thread_fence(std::memory_order_seq_cst);
// Load the appropriate thread pointers for scheduling.
KThread* const cur_thread{GetCurrentThreadPointer(m_kernel)};
KThread* highest_priority_thread{m_state.highest_priority_thread};
// Check whether there are runnable interrupt tasks.
if (m_state.interrupt_task_runnable) {
// The interrupt task is runnable.
// We want to switch to the interrupt task/idle thread.
highest_priority_thread = nullptr;
}
// If there aren't, we want to check if the highest priority thread is the same as the current
// thread.
if (highest_priority_thread == cur_thread) {
// If they're the same, then we can just issue a memory barrier and return.
std::atomic_thread_fence(std::memory_order_seq_cst);
return;
}
// The highest priority thread is not the same as the current thread.
// Jump to the switcher and continue executing from there.
m_switch_cur_thread = cur_thread;
m_switch_highest_priority_thread = highest_priority_thread;
m_switch_from_schedule = true;
Common::Fiber::YieldTo(cur_thread->m_host_context, *m_switch_fiber);
// Returning from ScheduleImpl occurs after this thread has been scheduled again.
}
void KScheduler::ScheduleImplFiber() {
KThread* const cur_thread{m_switch_cur_thread};
KThread* highest_priority_thread{m_switch_highest_priority_thread};
// If we're not coming from scheduling (i.e., we came from SC preemption),
// we should restart the scheduling loop directly. Not accurate to HOS.
if (!m_switch_from_schedule) {
goto retry;
}
// Mark that we are not coming from scheduling anymore.
m_switch_from_schedule = false;
// Save the original thread context.
Unload(cur_thread);
// The current thread's context has been entirely taken care of.
// Now we want to loop until we successfully switch the thread context.
while (true) {
// We're starting to try to do the context switch.
// Check if the highest priority thread is null.
if (!highest_priority_thread) {
// The next thread is nullptr!
// Switch to the idle thread. Note: HOS treats idling as a special case for
// performance. This is not *required* for yuzu's purposes, and for singlecore
// compatibility, we can just move the logic that would go here into the execution
// of the idle thread. If we ever remove singlecore, we should implement this
// accurately to HOS.
highest_priority_thread = m_idle_thread;
}
// We want to try to lock the highest priority thread's context.
// Try to take it.
while (!highest_priority_thread->m_context_guard.try_lock()) {
// The highest priority thread's context is already locked.
// Check if we need scheduling. If we don't, we can retry directly.
if (m_state.needs_scheduling.load(std::memory_order_seq_cst)) {
// If we do, another core is interfering, and we must start again.
goto retry;
}
}
// It's time to switch the thread.
// Switch to the highest priority thread.
SwitchThread(highest_priority_thread);
// Check if we need scheduling. If we do, then we can't complete the switch and should
// retry.
if (m_state.needs_scheduling.load(std::memory_order_seq_cst)) {
// Our switch failed.
// We should unlock the thread context, and then retry.
highest_priority_thread->m_context_guard.unlock();
goto retry;
} else {
break;
}
retry:
// We failed to successfully do the context switch, and need to retry.
// Clear needs_scheduling.
m_state.needs_scheduling.store(false, std::memory_order_relaxed);
std::atomic_thread_fence(std::memory_order_seq_cst);
// Refresh the highest priority thread.
highest_priority_thread = m_state.highest_priority_thread;
}
// Reload the guest thread context.
Reload(highest_priority_thread);
// Reload the host thread.
Common::Fiber::YieldTo(m_switch_fiber, *highest_priority_thread->m_host_context);
}
void KScheduler::Unload(KThread* thread) {
auto& cpu_core = m_kernel.System().ArmInterface(m_core_id);
cpu_core.SaveContext(thread->GetContext32());
cpu_core.SaveContext(thread->GetContext64());
// Save the TPIDR_EL0 system register in case it was modified.
thread->SetTpidrEl0(cpu_core.GetTPIDR_EL0());
cpu_core.ClearExclusiveState();
// Check if the thread is terminated by checking the DPC flags.
if ((thread->GetStackParameters().dpc_flags & static_cast<u32>(DpcFlag::Terminated)) == 0) {
// The thread isn't terminated, so we want to unlock it.
thread->m_context_guard.unlock();
}
}
void KScheduler::Reload(KThread* thread) {
auto& cpu_core = m_kernel.System().ArmInterface(m_core_id);
auto* process = thread->GetOwnerProcess();
cpu_core.LoadContext(thread->GetContext32());
cpu_core.LoadContext(thread->GetContext64());
cpu_core.SetTlsAddress(GetInteger(thread->GetTlsAddress()));
cpu_core.SetTPIDR_EL0(thread->GetTpidrEl0());
cpu_core.LoadWatchpointArray(process ? &process->GetWatchpoints() : nullptr);
cpu_core.ClearExclusiveState();
}
void KScheduler::ClearPreviousThread(KernelCore& kernel, KThread* thread) {
ASSERT(IsSchedulerLockedByCurrentThread(kernel));
for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; ++i) {
// Get an atomic reference to the core scheduler's previous thread.
auto& prev_thread{kernel.Scheduler(i).m_state.prev_thread};
// Atomically clear the previous thread if it's our target.
KThread* compare = thread;
prev_thread.compare_exchange_strong(compare, nullptr, std::memory_order_seq_cst);
}
}
void KScheduler::OnThreadStateChanged(KernelCore& kernel, KThread* thread, ThreadState old_state) {
ASSERT(IsSchedulerLockedByCurrentThread(kernel));
// Check if the state has changed, because if it hasn't there's nothing to do.
const ThreadState cur_state = thread->GetRawState();
if (cur_state == old_state) {
return;
}
// Update the priority queues.
if (old_state == ThreadState::Runnable) {
// If we were previously runnable, then we're not runnable now, and we should remove.
GetPriorityQueue(kernel).Remove(thread);
IncrementScheduledCount(thread);
SetSchedulerUpdateNeeded(kernel);
if (thread->IsDummyThread()) {
// HACK: if this is a dummy thread, it should no longer wake up when the
// scheduler lock is released.
kernel.GlobalSchedulerContext().UnregisterDummyThreadForWakeup(thread);
}
} else if (cur_state == ThreadState::Runnable) {
// If we're now runnable, then we weren't previously, and we should add.
GetPriorityQueue(kernel).PushBack(thread);
IncrementScheduledCount(thread);
SetSchedulerUpdateNeeded(kernel);
if (thread->IsDummyThread()) {
// HACK: if this is a dummy thread, it should wake up when the scheduler
// lock is released.
kernel.GlobalSchedulerContext().RegisterDummyThreadForWakeup(thread);
}
}
}
void KScheduler::OnThreadPriorityChanged(KernelCore& kernel, KThread* thread, s32 old_priority) {
ASSERT(IsSchedulerLockedByCurrentThread(kernel));
// If the thread is runnable, we want to change its priority in the queue.
if (thread->GetRawState() == ThreadState::Runnable) {
GetPriorityQueue(kernel).ChangePriority(old_priority,
thread == GetCurrentThreadPointer(kernel), thread);
IncrementScheduledCount(thread);
SetSchedulerUpdateNeeded(kernel);
}
}
void KScheduler::OnThreadAffinityMaskChanged(KernelCore& kernel, KThread* thread,
const KAffinityMask& old_affinity, s32 old_core) {
ASSERT(IsSchedulerLockedByCurrentThread(kernel));
// If the thread is runnable, we want to change its affinity in the queue.
if (thread->GetRawState() == ThreadState::Runnable) {
GetPriorityQueue(kernel).ChangeAffinityMask(old_core, old_affinity, thread);
IncrementScheduledCount(thread);
SetSchedulerUpdateNeeded(kernel);
}
}
void KScheduler::RotateScheduledQueue(KernelCore& kernel, s32 core_id, s32 priority) {
ASSERT(IsSchedulerLockedByCurrentThread(kernel));
// Get a reference to the priority queue.
auto& priority_queue = GetPriorityQueue(kernel);
// Rotate the front of the queue to the end.
KThread* top_thread = priority_queue.GetScheduledFront(core_id, priority);
KThread* next_thread = nullptr;
if (top_thread != nullptr) {
next_thread = priority_queue.MoveToScheduledBack(top_thread);
if (next_thread != top_thread) {
IncrementScheduledCount(top_thread);
IncrementScheduledCount(next_thread);
}
}
// While we have a suggested thread, try to migrate it!
{
KThread* suggested = priority_queue.GetSuggestedFront(core_id, priority);
while (suggested != nullptr) {
// Check if the suggested thread is the top thread on its core.
const s32 suggested_core = suggested->GetActiveCore();
if (KThread* top_on_suggested_core =
(suggested_core >= 0) ? priority_queue.GetScheduledFront(suggested_core)
: nullptr;
top_on_suggested_core != suggested) {
// If the next thread is a new thread that has been waiting longer than our
// suggestion, we prefer it to our suggestion.
if (top_thread != next_thread && next_thread != nullptr &&
next_thread->GetLastScheduledTick() < suggested->GetLastScheduledTick()) {
suggested = nullptr;
break;
}
// If we're allowed to do a migration, do one.
// NOTE: Unlike migrations in UpdateHighestPriorityThread, this moves the suggestion
// to the front of the queue.
if (top_on_suggested_core == nullptr ||
top_on_suggested_core->GetPriority() >= HighestCoreMigrationAllowedPriority) {
suggested->SetActiveCore(core_id);
priority_queue.ChangeCore(suggested_core, suggested, true);
IncrementScheduledCount(suggested);
break;
}
}
// Get the next suggestion.
suggested = priority_queue.GetSamePriorityNext(core_id, suggested);
}
}
// Now that we might have migrated a thread with the same priority, check if we can do better.
{
KThread* best_thread = priority_queue.GetScheduledFront(core_id);
if (best_thread == GetCurrentThreadPointer(kernel)) {
best_thread = priority_queue.GetScheduledNext(core_id, best_thread);
}
// If the best thread we can choose has a priority the same or worse than ours, try to
// migrate a higher priority thread.
if (best_thread != nullptr && best_thread->GetPriority() >= priority) {
KThread* suggested = priority_queue.GetSuggestedFront(core_id);
while (suggested != nullptr) {
// If the suggestion's priority is the same as ours, don't bother.
if (suggested->GetPriority() >= best_thread->GetPriority()) {
break;
}
// Check if the suggested thread is the top thread on its core.
const s32 suggested_core = suggested->GetActiveCore();
if (KThread* top_on_suggested_core =
(suggested_core >= 0) ? priority_queue.GetScheduledFront(suggested_core)
: nullptr;
top_on_suggested_core != suggested) {
// If we're allowed to do a migration, do one.
// NOTE: Unlike migrations in UpdateHighestPriorityThread, this moves the
// suggestion to the front of the queue.
if (top_on_suggested_core == nullptr ||
top_on_suggested_core->GetPriority() >=
HighestCoreMigrationAllowedPriority) {
suggested->SetActiveCore(core_id);
priority_queue.ChangeCore(suggested_core, suggested, true);
IncrementScheduledCount(suggested);
break;
}
}
// Get the next suggestion.
suggested = priority_queue.GetSuggestedNext(core_id, suggested);
}
}
}
// After a rotation, we need a scheduler update.
SetSchedulerUpdateNeeded(kernel);
}
void KScheduler::YieldWithoutCoreMigration(KernelCore& kernel) {
// Validate preconditions.
ASSERT(CanSchedule(kernel));
ASSERT(GetCurrentProcessPointer(kernel) != nullptr);
// Get the current thread and process.
KThread& cur_thread = GetCurrentThread(kernel);
KProcess& cur_process = GetCurrentProcess(kernel);
// If the thread's yield count matches, there's nothing for us to do.
if (cur_thread.GetYieldScheduleCount() == cur_process.GetScheduledCount()) {
return;
}
// Get a reference to the priority queue.
auto& priority_queue = GetPriorityQueue(kernel);
// Perform the yield.
{
KScopedSchedulerLock sl{kernel};
const auto cur_state = cur_thread.GetRawState();
if (cur_state == ThreadState::Runnable) {
// Put the current thread at the back of the queue.
KThread* next_thread = priority_queue.MoveToScheduledBack(std::addressof(cur_thread));
IncrementScheduledCount(std::addressof(cur_thread));
// If the next thread is different, we have an update to perform.
if (next_thread != std::addressof(cur_thread)) {
SetSchedulerUpdateNeeded(kernel);
} else {
// Otherwise, set the thread's yield count so that we won't waste work until the
// process is scheduled again.
cur_thread.SetYieldScheduleCount(cur_process.GetScheduledCount());
}
}
}
}
void KScheduler::YieldWithCoreMigration(KernelCore& kernel) {
// Validate preconditions.
ASSERT(CanSchedule(kernel));
ASSERT(GetCurrentProcessPointer(kernel) != nullptr);
// Get the current thread and process.
KThread& cur_thread = GetCurrentThread(kernel);
KProcess& cur_process = GetCurrentProcess(kernel);
// If the thread's yield count matches, there's nothing for us to do.
if (cur_thread.GetYieldScheduleCount() == cur_process.GetScheduledCount()) {
return;
}
// Get a reference to the priority queue.
auto& priority_queue = GetPriorityQueue(kernel);
// Perform the yield.
{
KScopedSchedulerLock sl{kernel};
const auto cur_state = cur_thread.GetRawState();
if (cur_state == ThreadState::Runnable) {
// Get the current active core.
const s32 core_id = cur_thread.GetActiveCore();
// Put the current thread at the back of the queue.
KThread* next_thread = priority_queue.MoveToScheduledBack(std::addressof(cur_thread));
IncrementScheduledCount(std::addressof(cur_thread));
// While we have a suggested thread, try to migrate it!
bool recheck = false;
KThread* suggested = priority_queue.GetSuggestedFront(core_id);
while (suggested != nullptr) {
// Check if the suggested thread is the thread running on its core.
const s32 suggested_core = suggested->GetActiveCore();
if (KThread* running_on_suggested_core =
(suggested_core >= 0)
? kernel.Scheduler(suggested_core).m_state.highest_priority_thread
: nullptr;
running_on_suggested_core != suggested) {
// If the current thread's priority is higher than our suggestion's we prefer
// the next thread to the suggestion. We also prefer the next thread when the
// current thread's priority is equal to the suggestions, but the next thread
// has been waiting longer.
if ((suggested->GetPriority() > cur_thread.GetPriority()) ||
(suggested->GetPriority() == cur_thread.GetPriority() &&
next_thread != std::addressof(cur_thread) &&
next_thread->GetLastScheduledTick() < suggested->GetLastScheduledTick())) {
suggested = nullptr;
break;
}
// If we're allowed to do a migration, do one.
// NOTE: Unlike migrations in UpdateHighestPriorityThread, this moves the
// suggestion to the front of the queue.
if (running_on_suggested_core == nullptr ||
running_on_suggested_core->GetPriority() >=
HighestCoreMigrationAllowedPriority) {
suggested->SetActiveCore(core_id);
priority_queue.ChangeCore(suggested_core, suggested, true);
IncrementScheduledCount(suggested);
break;
} else {
// We couldn't perform a migration, but we should check again on a future
// yield.
recheck = true;
}
}
// Get the next suggestion.
suggested = priority_queue.GetSuggestedNext(core_id, suggested);
}
// If we still have a suggestion or the next thread is different, we have an update to
// perform.
if (suggested != nullptr || next_thread != std::addressof(cur_thread)) {
SetSchedulerUpdateNeeded(kernel);
} else if (!recheck) {
// Otherwise if we don't need to re-check, set the thread's yield count so that we
// won't waste work until the process is scheduled again.
cur_thread.SetYieldScheduleCount(cur_process.GetScheduledCount());
}
}
}
}
void KScheduler::YieldToAnyThread(KernelCore& kernel) {
// Validate preconditions.
ASSERT(CanSchedule(kernel));
ASSERT(GetCurrentProcessPointer(kernel) != nullptr);
// Get the current thread and process.
KThread& cur_thread = GetCurrentThread(kernel);
KProcess& cur_process = GetCurrentProcess(kernel);
// If the thread's yield count matches, there's nothing for us to do.
if (cur_thread.GetYieldScheduleCount() == cur_process.GetScheduledCount()) {
return;
}
// Get a reference to the priority queue.
auto& priority_queue = GetPriorityQueue(kernel);
// Perform the yield.
{
KScopedSchedulerLock sl{kernel};
const auto cur_state = cur_thread.GetRawState();
if (cur_state == ThreadState::Runnable) {
// Get the current active core.
const s32 core_id = cur_thread.GetActiveCore();
// Migrate the current thread to core -1.
cur_thread.SetActiveCore(-1);
priority_queue.ChangeCore(core_id, std::addressof(cur_thread));
IncrementScheduledCount(std::addressof(cur_thread));
// If there's nothing scheduled, we can try to perform a migration.
if (priority_queue.GetScheduledFront(core_id) == nullptr) {
// While we have a suggested thread, try to migrate it!
KThread* suggested = priority_queue.GetSuggestedFront(core_id);
while (suggested != nullptr) {
// Check if the suggested thread is the top thread on its core.
const s32 suggested_core = suggested->GetActiveCore();
if (KThread* top_on_suggested_core =
(suggested_core >= 0) ? priority_queue.GetScheduledFront(suggested_core)
: nullptr;
top_on_suggested_core != suggested) {
// If we're allowed to do a migration, do one.
if (top_on_suggested_core == nullptr ||
top_on_suggested_core->GetPriority() >=
HighestCoreMigrationAllowedPriority) {
suggested->SetActiveCore(core_id);
priority_queue.ChangeCore(suggested_core, suggested);
IncrementScheduledCount(suggested);
}
// Regardless of whether we migrated, we had a candidate, so we're done.
break;
}
// Get the next suggestion.
suggested = priority_queue.GetSuggestedNext(core_id, suggested);
}
// If the suggestion is different from the current thread, we need to perform an
// update.
if (suggested != std::addressof(cur_thread)) {
SetSchedulerUpdateNeeded(kernel);
} else {
// Otherwise, set the thread's yield count so that we won't waste work until the
// process is scheduled again.
cur_thread.SetYieldScheduleCount(cur_process.GetScheduledCount());
}
} else {
// Otherwise, we have an update to perform.
SetSchedulerUpdateNeeded(kernel);
}
}
}
}
void KScheduler::RescheduleOtherCores(u64 cores_needing_scheduling) {
if (const u64 core_mask = cores_needing_scheduling & ~(1ULL << m_core_id); core_mask != 0) {
RescheduleCores(m_kernel, core_mask);
}
}
void KScheduler::RescheduleCores(KernelCore& kernel, u64 core_mask) {
// Send IPI
for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
if (core_mask & (1ULL << i)) {
kernel.PhysicalCore(i).Interrupt();
}
}
}
} // namespace Kernel