yuzu/src/common/x64/abi.cpp
aroulin 179ad35c2e x64: Proper stack alignment in shader JIT function calls
Import Dolphin stack handling and register saving routines
Also removes the x86 parts from abi files
2015-09-01 23:39:52 +02:00

363 lines
11 KiB
C++

// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include "abi.h"
#include "emitter.h"
using namespace Gen;
// Shared code between Win64 and Unix64
void XEmitter::ABI_CalculateFrameSize(BitSet32 mask, size_t rsp_alignment, size_t needed_frame_size, size_t* shadowp, size_t* subtractionp, size_t* xmm_offsetp) {
size_t shadow = 0;
#if defined(_WIN32)
shadow = 0x20;
#endif
int count = (mask & ABI_ALL_GPRS).Count();
rsp_alignment -= count * 8;
size_t subtraction = 0;
int fpr_count = (mask & ABI_ALL_FPRS).Count();
if (fpr_count) {
// If we have any XMMs to save, we must align the stack here.
subtraction = rsp_alignment & 0xf;
}
subtraction += 16 * fpr_count;
size_t xmm_base_subtraction = subtraction;
subtraction += needed_frame_size;
subtraction += shadow;
// Final alignment.
rsp_alignment -= subtraction;
subtraction += rsp_alignment & 0xf;
*shadowp = shadow;
*subtractionp = subtraction;
*xmm_offsetp = subtraction - xmm_base_subtraction;
}
size_t XEmitter::ABI_PushRegistersAndAdjustStack(BitSet32 mask, size_t rsp_alignment, size_t needed_frame_size) {
size_t shadow, subtraction, xmm_offset;
ABI_CalculateFrameSize(mask, rsp_alignment, needed_frame_size, &shadow, &subtraction, &xmm_offset);
for (int r : mask & ABI_ALL_GPRS)
PUSH((X64Reg)r);
if (subtraction)
SUB(64, R(RSP), subtraction >= 0x80 ? Imm32((u32)subtraction) : Imm8((u8)subtraction));
for (int x : mask & ABI_ALL_FPRS) {
MOVAPD(MDisp(RSP, (int)xmm_offset), (X64Reg)(x - 16));
xmm_offset += 16;
}
return shadow;
}
void XEmitter::ABI_PopRegistersAndAdjustStack(BitSet32 mask, size_t rsp_alignment, size_t needed_frame_size) {
size_t shadow, subtraction, xmm_offset;
ABI_CalculateFrameSize(mask, rsp_alignment, needed_frame_size, &shadow, &subtraction, &xmm_offset);
for (int x : mask & ABI_ALL_FPRS) {
MOVAPD((X64Reg) (x - 16), MDisp(RSP, (int)xmm_offset));
xmm_offset += 16;
}
if (subtraction)
ADD(64, R(RSP), subtraction >= 0x80 ? Imm32((u32)subtraction) : Imm8((u8)subtraction));
for (int r = 15; r >= 0; r--) {
if (mask[r])
POP((X64Reg)r);
}
}
// Common functions
void XEmitter::ABI_CallFunction(const void *func) {
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionC16(const void *func, u16 param1) {
MOV(32, R(ABI_PARAM1), Imm32((u32)param1));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionCC16(const void *func, u32 param1, u16 param2) {
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32((u32)param2));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionC(const void *func, u32 param1) {
MOV(32, R(ABI_PARAM1), Imm32(param1));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionCC(const void *func, u32 param1, u32 param2) {
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32(param2));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionCCC(const void *func, u32 param1, u32 param2, u32 param3) {
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32(param2));
MOV(32, R(ABI_PARAM3), Imm32(param3));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionCCP(const void *func, u32 param1, u32 param2, void *param3) {
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32(param2));
MOV(64, R(ABI_PARAM3), ImmPtr(param3));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionCCCP(const void *func, u32 param1, u32 param2, u32 param3, void *param4) {
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32(param2));
MOV(32, R(ABI_PARAM3), Imm32(param3));
MOV(64, R(ABI_PARAM4), ImmPtr(param4));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionP(const void *func, void *param1) {
MOV(64, R(ABI_PARAM1), ImmPtr(param1));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionPA(const void *func, void *param1, const Gen::OpArg &arg2) {
MOV(64, R(ABI_PARAM1), ImmPtr(param1));
if (!arg2.IsSimpleReg(ABI_PARAM2))
MOV(32, R(ABI_PARAM2), arg2);
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionPAA(const void *func, void *param1, const Gen::OpArg &arg2, const Gen::OpArg &arg3) {
MOV(64, R(ABI_PARAM1), ImmPtr(param1));
if (!arg2.IsSimpleReg(ABI_PARAM2))
MOV(32, R(ABI_PARAM2), arg2);
if (!arg3.IsSimpleReg(ABI_PARAM3))
MOV(32, R(ABI_PARAM3), arg3);
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionPPC(const void *func, void *param1, void *param2, u32 param3) {
MOV(64, R(ABI_PARAM1), ImmPtr(param1));
MOV(64, R(ABI_PARAM2), ImmPtr(param2));
MOV(32, R(ABI_PARAM3), Imm32(param3));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
// Pass a register as a parameter.
void XEmitter::ABI_CallFunctionR(const void *func, X64Reg reg1) {
if (reg1 != ABI_PARAM1)
MOV(32, R(ABI_PARAM1), R(reg1));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
// Pass two registers as parameters.
void XEmitter::ABI_CallFunctionRR(const void *func, X64Reg reg1, X64Reg reg2) {
if (reg2 != ABI_PARAM1) {
if (reg1 != ABI_PARAM1)
MOV(64, R(ABI_PARAM1), R(reg1));
if (reg2 != ABI_PARAM2)
MOV(64, R(ABI_PARAM2), R(reg2));
} else {
if (reg2 != ABI_PARAM2)
MOV(64, R(ABI_PARAM2), R(reg2));
if (reg1 != ABI_PARAM1)
MOV(64, R(ABI_PARAM1), R(reg1));
}
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionAC(const void *func, const Gen::OpArg &arg1, u32 param2)
{
if (!arg1.IsSimpleReg(ABI_PARAM1))
MOV(32, R(ABI_PARAM1), arg1);
MOV(32, R(ABI_PARAM2), Imm32(param2));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionACC(const void *func, const Gen::OpArg &arg1, u32 param2, u32 param3)
{
if (!arg1.IsSimpleReg(ABI_PARAM1))
MOV(32, R(ABI_PARAM1), arg1);
MOV(32, R(ABI_PARAM2), Imm32(param2));
MOV(64, R(ABI_PARAM3), Imm64(param3));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionA(const void *func, const Gen::OpArg &arg1)
{
if (!arg1.IsSimpleReg(ABI_PARAM1))
MOV(32, R(ABI_PARAM1), arg1);
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionAA(const void *func, const Gen::OpArg &arg1, const Gen::OpArg &arg2)
{
if (!arg1.IsSimpleReg(ABI_PARAM1))
MOV(32, R(ABI_PARAM1), arg1);
if (!arg2.IsSimpleReg(ABI_PARAM2))
MOV(32, R(ABI_PARAM2), arg2);
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}