yuzu/src/core/gdbstub/gdbstub.cpp
Lioncash 83377113bf memory: Dehardcode the use of fixed memory range constants
The locations of these can actually vary depending on the address space
layout, so we shouldn't be using these when determining where to map
memory or be using them as offsets for calculations. This keeps all the
memory ranges flexible and malleable based off of the virtual memory
manager instance state.
2018-09-24 22:16:03 -04:00

1324 lines
37 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
// Originally written by Sven Peter <sven@fail0verflow.com> for anergistic.
#include <algorithm>
#include <atomic>
#include <climits>
#include <csignal>
#include <cstdarg>
#include <cstdio>
#include <cstring>
#include <map>
#include <numeric>
#include <fcntl.h>
#ifdef _WIN32
#include <winsock2.h>
// winsock2.h needs to be included first to prevent winsock.h being included by other includes
#include <io.h>
#include <iphlpapi.h>
#include <ws2tcpip.h>
#define SHUT_RDWR 2
#else
#include <netinet/in.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>
#endif
#include "common/logging/log.h"
#include "common/string_util.h"
#include "common/swap.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/core_cpu.h"
#include "core/gdbstub/gdbstub.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/loader/loader.h"
#include "core/memory.h"
namespace GDBStub {
namespace {
constexpr int GDB_BUFFER_SIZE = 10000;
constexpr char GDB_STUB_START = '$';
constexpr char GDB_STUB_END = '#';
constexpr char GDB_STUB_ACK = '+';
constexpr char GDB_STUB_NACK = '-';
#ifndef SIGTRAP
constexpr u32 SIGTRAP = 5;
#endif
#ifndef SIGTERM
constexpr u32 SIGTERM = 15;
#endif
#ifndef MSG_WAITALL
constexpr u32 MSG_WAITALL = 8;
#endif
constexpr u32 LR_REGISTER = 30;
constexpr u32 SP_REGISTER = 31;
constexpr u32 PC_REGISTER = 32;
constexpr u32 PSTATE_REGISTER = 33;
constexpr u32 UC_ARM64_REG_Q0 = 34;
constexpr u32 FPCR_REGISTER = 66;
// TODO/WiP - Used while working on support for FPU
constexpr u32 TODO_DUMMY_REG_997 = 997;
constexpr u32 TODO_DUMMY_REG_998 = 998;
// For sample XML files see the GDB source /gdb/features
// GDB also wants the l character at the start
// This XML defines what the registers are for this specific ARM device
constexpr char target_xml[] =
R"(l<?xml version="1.0"?>
<!DOCTYPE target SYSTEM "gdb-target.dtd">
<target version="1.0">
<feature name="org.gnu.gdb.aarch64.core">
<reg name="x0" bitsize="64"/>
<reg name="x1" bitsize="64"/>
<reg name="x2" bitsize="64"/>
<reg name="x3" bitsize="64"/>
<reg name="x4" bitsize="64"/>
<reg name="x5" bitsize="64"/>
<reg name="x6" bitsize="64"/>
<reg name="x7" bitsize="64"/>
<reg name="x8" bitsize="64"/>
<reg name="x9" bitsize="64"/>
<reg name="x10" bitsize="64"/>
<reg name="x11" bitsize="64"/>
<reg name="x12" bitsize="64"/>
<reg name="x13" bitsize="64"/>
<reg name="x14" bitsize="64"/>
<reg name="x15" bitsize="64"/>
<reg name="x16" bitsize="64"/>
<reg name="x17" bitsize="64"/>
<reg name="x18" bitsize="64"/>
<reg name="x19" bitsize="64"/>
<reg name="x20" bitsize="64"/>
<reg name="x21" bitsize="64"/>
<reg name="x22" bitsize="64"/>
<reg name="x23" bitsize="64"/>
<reg name="x24" bitsize="64"/>
<reg name="x25" bitsize="64"/>
<reg name="x26" bitsize="64"/>
<reg name="x27" bitsize="64"/>
<reg name="x28" bitsize="64"/>
<reg name="x29" bitsize="64"/>
<reg name="x30" bitsize="64"/>
<reg name="sp" bitsize="64" type="data_ptr"/>
<reg name="pc" bitsize="64" type="code_ptr"/>
<flags id="pstate_flags" size="4">
<field name="SP" start="0" end="0"/>
<field name="" start="1" end="1"/>
<field name="EL" start="2" end="3"/>
<field name="nRW" start="4" end="4"/>
<field name="" start="5" end="5"/>
<field name="F" start="6" end="6"/>
<field name="I" start="7" end="7"/>
<field name="A" start="8" end="8"/>
<field name="D" start="9" end="9"/>
<field name="IL" start="20" end="20"/>
<field name="SS" start="21" end="21"/>
<field name="V" start="28" end="28"/>
<field name="C" start="29" end="29"/>
<field name="Z" start="30" end="30"/>
<field name="N" start="31" end="31"/>
</flags>
<reg name="pstate" bitsize="32" type="pstate_flags"/>
</feature>
<feature name="org.gnu.gdb.aarch64.fpu">
</feature>
</target>
)";
int gdbserver_socket = -1;
u8 command_buffer[GDB_BUFFER_SIZE];
u32 command_length;
u32 latest_signal = 0;
bool memory_break = false;
Kernel::Thread* current_thread = nullptr;
u32 current_core = 0;
// Binding to a port within the reserved ports range (0-1023) requires root permissions,
// so default to a port outside of that range.
u16 gdbstub_port = 24689;
bool halt_loop = true;
bool step_loop = false;
bool send_trap = false;
// If set to false, the server will never be started and no
// gdbstub-related functions will be executed.
std::atomic<bool> server_enabled(false);
#ifdef _WIN32
WSADATA InitData;
#endif
struct Breakpoint {
bool active;
VAddr addr;
u64 len;
std::array<u8, 4> inst;
};
using BreakpointMap = std::map<VAddr, Breakpoint>;
BreakpointMap breakpoints_execute;
BreakpointMap breakpoints_read;
BreakpointMap breakpoints_write;
struct Module {
std::string name;
VAddr beg;
VAddr end;
};
std::vector<Module> modules;
} // Anonymous namespace
void RegisterModule(std::string name, VAddr beg, VAddr end, bool add_elf_ext) {
Module module;
if (add_elf_ext) {
Common::SplitPath(name, nullptr, &module.name, nullptr);
module.name += ".elf";
} else {
module.name = std::move(name);
}
module.beg = beg;
module.end = end;
modules.push_back(std::move(module));
}
static Kernel::Thread* FindThreadById(int id) {
for (u32 core = 0; core < Core::NUM_CPU_CORES; core++) {
const auto& threads = Core::System::GetInstance().Scheduler(core)->GetThreadList();
for (auto& thread : threads) {
if (thread->GetThreadId() == static_cast<u32>(id)) {
current_core = core;
return thread.get();
}
}
}
return nullptr;
}
static u64 RegRead(std::size_t id, Kernel::Thread* thread = nullptr) {
if (!thread) {
return 0;
}
if (id < SP_REGISTER) {
return thread->context.cpu_registers[id];
} else if (id == SP_REGISTER) {
return thread->context.sp;
} else if (id == PC_REGISTER) {
return thread->context.pc;
} else if (id == PSTATE_REGISTER) {
return thread->context.pstate;
} else if (id > PSTATE_REGISTER && id < FPCR_REGISTER) {
return thread->context.vector_registers[id - UC_ARM64_REG_Q0][0];
} else {
return 0;
}
}
static void RegWrite(std::size_t id, u64 val, Kernel::Thread* thread = nullptr) {
if (!thread) {
return;
}
if (id < SP_REGISTER) {
thread->context.cpu_registers[id] = val;
} else if (id == SP_REGISTER) {
thread->context.sp = val;
} else if (id == PC_REGISTER) {
thread->context.pc = val;
} else if (id == PSTATE_REGISTER) {
thread->context.pstate = val;
} else if (id > PSTATE_REGISTER && id < FPCR_REGISTER) {
thread->context.vector_registers[id - (PSTATE_REGISTER + 1)][0] = val;
}
}
/**
* Turns hex string character into the equivalent byte.
*
* @param hex Input hex character to be turned into byte.
*/
static u8 HexCharToValue(u8 hex) {
if (hex >= '0' && hex <= '9') {
return hex - '0';
} else if (hex >= 'a' && hex <= 'f') {
return hex - 'a' + 0xA;
} else if (hex >= 'A' && hex <= 'F') {
return hex - 'A' + 0xA;
}
LOG_ERROR(Debug_GDBStub, "Invalid nibble: {} ({:02X})", hex, hex);
return 0;
}
/**
* Turn nibble of byte into hex string character.
*
* @param n Nibble to be turned into hex character.
*/
static u8 NibbleToHex(u8 n) {
n &= 0xF;
if (n < 0xA) {
return '0' + n;
} else {
return 'a' + n - 0xA;
}
}
/**
* Converts input hex string characters into an array of equivalent of u8 bytes.
*
* @param src Pointer to array of output hex string characters.
* @param len Length of src array.
*/
static u32 HexToInt(const u8* src, std::size_t len) {
u32 output = 0;
while (len-- > 0) {
output = (output << 4) | HexCharToValue(src[0]);
src++;
}
return output;
}
/**
* Converts input hex string characters into an array of equivalent of u8 bytes.
*
* @param src Pointer to array of output hex string characters.
* @param len Length of src array.
*/
static u64 HexToLong(const u8* src, std::size_t len) {
u64 output = 0;
while (len-- > 0) {
output = (output << 4) | HexCharToValue(src[0]);
src++;
}
return output;
}
/**
* Converts input array of u8 bytes into their equivalent hex string characters.
*
* @param dest Pointer to buffer to store output hex string characters.
* @param src Pointer to array of u8 bytes.
* @param len Length of src array.
*/
static void MemToGdbHex(u8* dest, const u8* src, std::size_t len) {
while (len-- > 0) {
u8 tmp = *src++;
*dest++ = NibbleToHex(tmp >> 4);
*dest++ = NibbleToHex(tmp);
}
}
/**
* Converts input gdb-formatted hex string characters into an array of equivalent of u8 bytes.
*
* @param dest Pointer to buffer to store u8 bytes.
* @param src Pointer to array of output hex string characters.
* @param len Length of src array.
*/
static void GdbHexToMem(u8* dest, const u8* src, std::size_t len) {
while (len-- > 0) {
*dest++ = (HexCharToValue(src[0]) << 4) | HexCharToValue(src[1]);
src += 2;
}
}
/**
* Convert a u32 into a gdb-formatted hex string.
*
* @param dest Pointer to buffer to store output hex string characters.
* @param v Value to convert.
*/
static void IntToGdbHex(u8* dest, u32 v) {
for (int i = 0; i < 8; i += 2) {
dest[i + 1] = NibbleToHex(static_cast<u8>(v >> (4 * i)));
dest[i] = NibbleToHex(static_cast<u8>(v >> (4 * (i + 1))));
}
}
/**
* Convert a u64 into a gdb-formatted hex string.
*
* @param dest Pointer to buffer to store output hex string characters.
* @param v Value to convert.
*/
static void LongToGdbHex(u8* dest, u64 v) {
for (int i = 0; i < 16; i += 2) {
dest[i + 1] = NibbleToHex(static_cast<u8>(v >> (4 * i)));
dest[i] = NibbleToHex(static_cast<u8>(v >> (4 * (i + 1))));
}
}
/**
* Convert a gdb-formatted hex string into a u32.
*
* @param src Pointer to hex string.
*/
static u32 GdbHexToInt(const u8* src) {
u32 output = 0;
for (int i = 0; i < 8; i += 2) {
output = (output << 4) | HexCharToValue(src[7 - i - 1]);
output = (output << 4) | HexCharToValue(src[7 - i]);
}
return output;
}
/**
* Convert a gdb-formatted hex string into a u64.
*
* @param src Pointer to hex string.
*/
static u64 GdbHexToLong(const u8* src) {
u64 output = 0;
for (int i = 0; i < 16; i += 2) {
output = (output << 4) | HexCharToValue(src[15 - i - 1]);
output = (output << 4) | HexCharToValue(src[15 - i]);
}
return output;
}
/// Read a byte from the gdb client.
static u8 ReadByte() {
u8 c;
std::size_t received_size = recv(gdbserver_socket, reinterpret_cast<char*>(&c), 1, MSG_WAITALL);
if (received_size != 1) {
LOG_ERROR(Debug_GDBStub, "recv failed: {}", received_size);
Shutdown();
}
return c;
}
/// Calculate the checksum of the current command buffer.
static u8 CalculateChecksum(const u8* buffer, std::size_t length) {
return static_cast<u8>(std::accumulate(buffer, buffer + length, 0, std::plus<u8>()));
}
/**
* Get the map of breakpoints for a given breakpoint type.
*
* @param type Type of breakpoint map.
*/
static BreakpointMap& GetBreakpointMap(BreakpointType type) {
switch (type) {
case BreakpointType::Execute:
return breakpoints_execute;
case BreakpointType::Read:
return breakpoints_read;
case BreakpointType::Write:
return breakpoints_write;
default:
return breakpoints_read;
}
}
/**
* Remove the breakpoint from the given address of the specified type.
*
* @param type Type of breakpoint.
* @param addr Address of breakpoint.
*/
static void RemoveBreakpoint(BreakpointType type, VAddr addr) {
BreakpointMap& p = GetBreakpointMap(type);
const auto bp = p.find(addr);
if (bp == p.end()) {
return;
}
LOG_DEBUG(Debug_GDBStub, "gdb: removed a breakpoint: {:016X} bytes at {:016X} of type {}",
bp->second.len, bp->second.addr, static_cast<int>(type));
Memory::WriteBlock(bp->second.addr, bp->second.inst.data(), bp->second.inst.size());
Core::System::GetInstance().InvalidateCpuInstructionCaches();
p.erase(addr);
}
BreakpointAddress GetNextBreakpointFromAddress(VAddr addr, BreakpointType type) {
const BreakpointMap& p = GetBreakpointMap(type);
const auto next_breakpoint = p.lower_bound(addr);
BreakpointAddress breakpoint;
if (next_breakpoint != p.end()) {
breakpoint.address = next_breakpoint->first;
breakpoint.type = type;
} else {
breakpoint.address = 0;
breakpoint.type = BreakpointType::None;
}
return breakpoint;
}
bool CheckBreakpoint(VAddr addr, BreakpointType type) {
if (!IsConnected()) {
return false;
}
const BreakpointMap& p = GetBreakpointMap(type);
const auto bp = p.find(addr);
if (bp == p.end()) {
return false;
}
u64 len = bp->second.len;
// IDA Pro defaults to 4-byte breakpoints for all non-hardware breakpoints
// no matter if it's a 4-byte or 2-byte instruction. When you execute a
// Thumb instruction with a 4-byte breakpoint set, it will set a breakpoint on
// two instructions instead of the single instruction you placed the breakpoint
// on. So, as a way to make sure that execution breakpoints are only breaking
// on the instruction that was specified, set the length of an execution
// breakpoint to 1. This should be fine since the CPU should never begin executing
// an instruction anywhere except the beginning of the instruction.
if (type == BreakpointType::Execute) {
len = 1;
}
if (bp->second.active && (addr >= bp->second.addr && addr < bp->second.addr + len)) {
LOG_DEBUG(Debug_GDBStub,
"Found breakpoint type {} @ {:016X}, range: {:016X}"
" - {:016X} ({:X} bytes)",
static_cast<int>(type), addr, bp->second.addr, bp->second.addr + len, len);
return true;
}
return false;
}
/**
* Send packet to gdb client.
*
* @param packet Packet to be sent to client.
*/
static void SendPacket(const char packet) {
std::size_t sent_size = send(gdbserver_socket, &packet, 1, 0);
if (sent_size != 1) {
LOG_ERROR(Debug_GDBStub, "send failed");
}
}
/**
* Send reply to gdb client.
*
* @param reply Reply to be sent to client.
*/
static void SendReply(const char* reply) {
if (!IsConnected()) {
return;
}
LOG_DEBUG(Debug_GDBStub, "Reply: {}", reply);
memset(command_buffer, 0, sizeof(command_buffer));
command_length = static_cast<u32>(strlen(reply));
if (command_length + 4 > sizeof(command_buffer)) {
LOG_ERROR(Debug_GDBStub, "command_buffer overflow in SendReply");
return;
}
memcpy(command_buffer + 1, reply, command_length);
u8 checksum = CalculateChecksum(command_buffer, command_length + 1);
command_buffer[0] = GDB_STUB_START;
command_buffer[command_length + 1] = GDB_STUB_END;
command_buffer[command_length + 2] = NibbleToHex(checksum >> 4);
command_buffer[command_length + 3] = NibbleToHex(checksum);
u8* ptr = command_buffer;
u32 left = command_length + 4;
while (left > 0) {
int sent_size = send(gdbserver_socket, reinterpret_cast<char*>(ptr), left, 0);
if (sent_size < 0) {
LOG_ERROR(Debug_GDBStub, "gdb: send failed");
return Shutdown();
}
left -= sent_size;
ptr += sent_size;
}
}
/// Handle query command from gdb client.
static void HandleQuery() {
LOG_DEBUG(Debug_GDBStub, "gdb: query '{}'", command_buffer + 1);
const char* query = reinterpret_cast<const char*>(command_buffer + 1);
if (strcmp(query, "TStatus") == 0) {
SendReply("T0");
} else if (strncmp(query, "Supported", strlen("Supported")) == 0) {
// PacketSize needs to be large enough for target xml
std::string buffer = "PacketSize=2000;qXfer:features:read+;qXfer:threads:read+";
if (!modules.empty()) {
buffer += ";qXfer:libraries:read+";
}
SendReply(buffer.c_str());
} else if (strncmp(query, "Xfer:features:read:target.xml:",
strlen("Xfer:features:read:target.xml:")) == 0) {
SendReply(target_xml);
} else if (strncmp(query, "Offsets", strlen("Offsets")) == 0) {
const VAddr base_address = Core::CurrentProcess()->vm_manager.GetCodeRegionBaseAddress();
std::string buffer = fmt::format("TextSeg={:0x}", base_address);
SendReply(buffer.c_str());
} else if (strncmp(query, "fThreadInfo", strlen("fThreadInfo")) == 0) {
std::string val = "m";
for (u32 core = 0; core < Core::NUM_CPU_CORES; core++) {
const auto& threads = Core::System::GetInstance().Scheduler(core)->GetThreadList();
for (const auto& thread : threads) {
val += fmt::format("{:x}", thread->GetThreadId());
val += ",";
}
}
val.pop_back();
SendReply(val.c_str());
} else if (strncmp(query, "sThreadInfo", strlen("sThreadInfo")) == 0) {
SendReply("l");
} else if (strncmp(query, "Xfer:threads:read", strlen("Xfer:threads:read")) == 0) {
std::string buffer;
buffer += "l<?xml version=\"1.0\"?>";
buffer += "<threads>";
for (u32 core = 0; core < Core::NUM_CPU_CORES; core++) {
const auto& threads = Core::System::GetInstance().Scheduler(core)->GetThreadList();
for (const auto& thread : threads) {
buffer +=
fmt::format(R"*(<thread id="{:x}" core="{:d}" name="Thread {:x}"></thread>)*",
thread->GetThreadId(), core, thread->GetThreadId());
}
}
buffer += "</threads>";
SendReply(buffer.c_str());
} else if (strncmp(query, "Xfer:libraries:read", strlen("Xfer:libraries:read")) == 0) {
std::string buffer;
buffer += "l<?xml version=\"1.0\"?>";
buffer += "<library-list>";
for (const auto& module : modules) {
buffer +=
fmt::format(R"*("<library name = "{}"><segment address = "0x{:x}"/></library>)*",
module.name, module.beg);
}
buffer += "</library-list>";
SendReply(buffer.c_str());
} else {
SendReply("");
}
}
/// Handle set thread command from gdb client.
static void HandleSetThread() {
int thread_id = -1;
if (command_buffer[2] != '-') {
thread_id = static_cast<int>(HexToInt(command_buffer + 2, command_length - 2));
}
if (thread_id >= 1) {
current_thread = FindThreadById(thread_id);
}
if (!current_thread) {
thread_id = 1;
current_thread = FindThreadById(thread_id);
}
if (current_thread) {
SendReply("OK");
return;
}
SendReply("E01");
}
/// Handle thread alive command from gdb client.
static void HandleThreadAlive() {
int thread_id = static_cast<int>(HexToInt(command_buffer + 1, command_length - 1));
if (thread_id == 0) {
thread_id = 1;
}
if (FindThreadById(thread_id)) {
SendReply("OK");
return;
}
SendReply("E01");
}
/**
* Send signal packet to client.
*
* @param signal Signal to be sent to client.
*/
static void SendSignal(Kernel::Thread* thread, u32 signal, bool full = true) {
if (gdbserver_socket == -1) {
return;
}
latest_signal = signal;
if (!thread) {
full = false;
}
std::string buffer;
if (full) {
buffer = fmt::format("T{:02x}{:02x}:{:016x};{:02x}:{:016x};{:02x}:{:016x}", latest_signal,
PC_REGISTER, Common::swap64(RegRead(PC_REGISTER, thread)), SP_REGISTER,
Common::swap64(RegRead(SP_REGISTER, thread)), LR_REGISTER,
Common::swap64(RegRead(LR_REGISTER, thread)));
} else {
buffer = fmt::format("T{:02x}", latest_signal);
}
if (thread) {
buffer += fmt::format(";thread:{:x};", thread->GetThreadId());
}
SendReply(buffer.c_str());
}
/// Read command from gdb client.
static void ReadCommand() {
command_length = 0;
memset(command_buffer, 0, sizeof(command_buffer));
u8 c = ReadByte();
if (c == '+') {
// ignore ack
return;
} else if (c == 0x03) {
LOG_INFO(Debug_GDBStub, "gdb: found break command");
halt_loop = true;
SendSignal(current_thread, SIGTRAP);
return;
} else if (c != GDB_STUB_START) {
LOG_DEBUG(Debug_GDBStub, "gdb: read invalid byte {:02X}", c);
return;
}
while ((c = ReadByte()) != GDB_STUB_END) {
if (command_length >= sizeof(command_buffer)) {
LOG_ERROR(Debug_GDBStub, "gdb: command_buffer overflow");
SendPacket(GDB_STUB_NACK);
return;
}
command_buffer[command_length++] = c;
}
u8 checksum_received = HexCharToValue(ReadByte()) << 4;
checksum_received |= HexCharToValue(ReadByte());
u8 checksum_calculated = CalculateChecksum(command_buffer, command_length);
if (checksum_received != checksum_calculated) {
LOG_ERROR(Debug_GDBStub,
"gdb: invalid checksum: calculated {:02X} and read {:02X} for ${}# (length: {})",
checksum_calculated, checksum_received, command_buffer, command_length);
command_length = 0;
SendPacket(GDB_STUB_NACK);
return;
}
SendPacket(GDB_STUB_ACK);
}
/// Check if there is data to be read from the gdb client.
static bool IsDataAvailable() {
if (!IsConnected()) {
return false;
}
fd_set fd_socket;
FD_ZERO(&fd_socket);
FD_SET(static_cast<u32>(gdbserver_socket), &fd_socket);
struct timeval t;
t.tv_sec = 0;
t.tv_usec = 0;
if (select(gdbserver_socket + 1, &fd_socket, nullptr, nullptr, &t) < 0) {
LOG_ERROR(Debug_GDBStub, "select failed");
return false;
}
return FD_ISSET(gdbserver_socket, &fd_socket) != 0;
}
/// Send requested register to gdb client.
static void ReadRegister() {
static u8 reply[64];
memset(reply, 0, sizeof(reply));
u32 id = HexCharToValue(command_buffer[1]);
if (command_buffer[2] != '\0') {
id <<= 4;
id |= HexCharToValue(command_buffer[2]);
}
if (id <= SP_REGISTER) {
LongToGdbHex(reply, RegRead(id, current_thread));
} else if (id == PC_REGISTER) {
LongToGdbHex(reply, RegRead(id, current_thread));
} else if (id == PSTATE_REGISTER) {
IntToGdbHex(reply, static_cast<u32>(RegRead(id, current_thread)));
} else if (id >= UC_ARM64_REG_Q0 && id < FPCR_REGISTER) {
LongToGdbHex(reply, RegRead(id, current_thread));
} else if (id == FPCR_REGISTER) {
LongToGdbHex(reply, RegRead(TODO_DUMMY_REG_998, current_thread));
} else {
LongToGdbHex(reply, RegRead(TODO_DUMMY_REG_997, current_thread));
}
SendReply(reinterpret_cast<char*>(reply));
}
/// Send all registers to the gdb client.
static void ReadRegisters() {
static u8 buffer[GDB_BUFFER_SIZE - 4];
memset(buffer, 0, sizeof(buffer));
u8* bufptr = buffer;
for (u32 reg = 0; reg <= SP_REGISTER; reg++) {
LongToGdbHex(bufptr + reg * 16, RegRead(reg, current_thread));
}
bufptr += 32 * 16;
LongToGdbHex(bufptr, RegRead(PC_REGISTER, current_thread));
bufptr += 16;
IntToGdbHex(bufptr, static_cast<u32>(RegRead(PSTATE_REGISTER, current_thread)));
bufptr += 8;
for (u32 reg = UC_ARM64_REG_Q0; reg <= UC_ARM64_REG_Q0 + 31; reg++) {
LongToGdbHex(bufptr + reg * 16, RegRead(reg, current_thread));
}
bufptr += 32 * 32;
LongToGdbHex(bufptr, RegRead(TODO_DUMMY_REG_998, current_thread));
bufptr += 8;
SendReply(reinterpret_cast<char*>(buffer));
}
/// Modify data of register specified by gdb client.
static void WriteRegister() {
const u8* buffer_ptr = command_buffer + 3;
u32 id = HexCharToValue(command_buffer[1]);
if (command_buffer[2] != '=') {
++buffer_ptr;
id <<= 4;
id |= HexCharToValue(command_buffer[2]);
}
if (id <= SP_REGISTER) {
RegWrite(id, GdbHexToLong(buffer_ptr), current_thread);
} else if (id == PC_REGISTER) {
RegWrite(id, GdbHexToLong(buffer_ptr), current_thread);
} else if (id == PSTATE_REGISTER) {
RegWrite(id, GdbHexToInt(buffer_ptr), current_thread);
} else if (id >= UC_ARM64_REG_Q0 && id < FPCR_REGISTER) {
RegWrite(id, GdbHexToLong(buffer_ptr), current_thread);
} else if (id == FPCR_REGISTER) {
RegWrite(TODO_DUMMY_REG_998, GdbHexToLong(buffer_ptr), current_thread);
} else {
RegWrite(TODO_DUMMY_REG_997, GdbHexToLong(buffer_ptr), current_thread);
}
// Update Unicorn context skipping scheduler, no running threads at this point
Core::System::GetInstance().ArmInterface(current_core).LoadContext(current_thread->context);
SendReply("OK");
}
/// Modify all registers with data received from the client.
static void WriteRegisters() {
const u8* buffer_ptr = command_buffer + 1;
if (command_buffer[0] != 'G')
return SendReply("E01");
for (u32 i = 0, reg = 0; reg <= FPCR_REGISTER; i++, reg++) {
if (reg <= SP_REGISTER) {
RegWrite(reg, GdbHexToLong(buffer_ptr + i * 16), current_thread);
} else if (reg == PC_REGISTER) {
RegWrite(PC_REGISTER, GdbHexToLong(buffer_ptr + i * 16), current_thread);
} else if (reg == PSTATE_REGISTER) {
RegWrite(PSTATE_REGISTER, GdbHexToInt(buffer_ptr + i * 16), current_thread);
} else if (reg >= UC_ARM64_REG_Q0 && reg < FPCR_REGISTER) {
RegWrite(reg, GdbHexToLong(buffer_ptr + i * 16), current_thread);
} else if (reg == FPCR_REGISTER) {
RegWrite(TODO_DUMMY_REG_998, GdbHexToLong(buffer_ptr + i * 16), current_thread);
} else {
UNIMPLEMENTED();
}
}
// Update Unicorn context skipping scheduler, no running threads at this point
Core::System::GetInstance().ArmInterface(current_core).LoadContext(current_thread->context);
SendReply("OK");
}
/// Read location in memory specified by gdb client.
static void ReadMemory() {
static u8 reply[GDB_BUFFER_SIZE - 4];
auto start_offset = command_buffer + 1;
const auto addr_pos = std::find(start_offset, command_buffer + command_length, ',');
const VAddr addr = HexToLong(start_offset, static_cast<u64>(addr_pos - start_offset));
start_offset = addr_pos + 1;
const u64 len =
HexToLong(start_offset, static_cast<u64>((command_buffer + command_length) - start_offset));
LOG_DEBUG(Debug_GDBStub, "gdb: addr: {:016X} len: {:016X}", addr, len);
if (len * 2 > sizeof(reply)) {
SendReply("E01");
}
const auto& vm_manager = Core::CurrentProcess()->vm_manager;
if (addr < vm_manager.GetCodeRegionBaseAddress() ||
addr >= vm_manager.GetMapRegionEndAddress()) {
return SendReply("E00");
}
if (!Memory::IsValidVirtualAddress(addr)) {
return SendReply("E00");
}
std::vector<u8> data(len);
Memory::ReadBlock(addr, data.data(), len);
MemToGdbHex(reply, data.data(), len);
reply[len * 2] = '\0';
SendReply(reinterpret_cast<char*>(reply));
}
/// Modify location in memory with data received from the gdb client.
static void WriteMemory() {
auto start_offset = command_buffer + 1;
auto addr_pos = std::find(start_offset, command_buffer + command_length, ',');
VAddr addr = HexToLong(start_offset, static_cast<u64>(addr_pos - start_offset));
start_offset = addr_pos + 1;
auto len_pos = std::find(start_offset, command_buffer + command_length, ':');
u64 len = HexToLong(start_offset, static_cast<u64>(len_pos - start_offset));
if (!Memory::IsValidVirtualAddress(addr)) {
return SendReply("E00");
}
std::vector<u8> data(len);
GdbHexToMem(data.data(), len_pos + 1, len);
Memory::WriteBlock(addr, data.data(), len);
Core::System::GetInstance().InvalidateCpuInstructionCaches();
SendReply("OK");
}
void Break(bool is_memory_break) {
send_trap = true;
memory_break = is_memory_break;
}
/// Tell the CPU that it should perform a single step.
static void Step() {
if (command_length > 1) {
RegWrite(PC_REGISTER, GdbHexToLong(command_buffer + 1), current_thread);
// Update Unicorn context skipping scheduler, no running threads at this point
Core::System::GetInstance().ArmInterface(current_core).LoadContext(current_thread->context);
}
step_loop = true;
halt_loop = true;
send_trap = true;
Core::System::GetInstance().InvalidateCpuInstructionCaches();
}
/// Tell the CPU if we hit a memory breakpoint.
bool IsMemoryBreak() {
if (IsConnected()) {
return false;
}
return memory_break;
}
/// Tell the CPU to continue executing.
static void Continue() {
memory_break = false;
step_loop = false;
halt_loop = false;
Core::System::GetInstance().InvalidateCpuInstructionCaches();
}
/**
* Commit breakpoint to list of breakpoints.
*
* @param type Type of breakpoint.
* @param addr Address of breakpoint.
* @param len Length of breakpoint.
*/
static bool CommitBreakpoint(BreakpointType type, VAddr addr, u64 len) {
BreakpointMap& p = GetBreakpointMap(type);
Breakpoint breakpoint;
breakpoint.active = true;
breakpoint.addr = addr;
breakpoint.len = len;
Memory::ReadBlock(addr, breakpoint.inst.data(), breakpoint.inst.size());
static constexpr std::array<u8, 4> btrap{{0x00, 0x7d, 0x20, 0xd4}};
Memory::WriteBlock(addr, btrap.data(), btrap.size());
Core::System::GetInstance().InvalidateCpuInstructionCaches();
p.insert({addr, breakpoint});
LOG_DEBUG(Debug_GDBStub, "gdb: added {} breakpoint: {:016X} bytes at {:016X}",
static_cast<int>(type), breakpoint.len, breakpoint.addr);
return true;
}
/// Handle add breakpoint command from gdb client.
static void AddBreakpoint() {
BreakpointType type;
u8 type_id = HexCharToValue(command_buffer[1]);
switch (type_id) {
case 0:
case 1:
type = BreakpointType::Execute;
break;
case 2:
type = BreakpointType::Write;
break;
case 3:
type = BreakpointType::Read;
break;
case 4:
type = BreakpointType::Access;
break;
default:
return SendReply("E01");
}
auto start_offset = command_buffer + 3;
auto addr_pos = std::find(start_offset, command_buffer + command_length, ',');
VAddr addr = HexToLong(start_offset, static_cast<u64>(addr_pos - start_offset));
start_offset = addr_pos + 1;
u64 len =
HexToLong(start_offset, static_cast<u64>((command_buffer + command_length) - start_offset));
if (type == BreakpointType::Access) {
// Access is made up of Read and Write types, so add both breakpoints
type = BreakpointType::Read;
if (!CommitBreakpoint(type, addr, len)) {
return SendReply("E02");
}
type = BreakpointType::Write;
}
if (!CommitBreakpoint(type, addr, len)) {
return SendReply("E02");
}
SendReply("OK");
}
/// Handle remove breakpoint command from gdb client.
static void RemoveBreakpoint() {
BreakpointType type;
u8 type_id = HexCharToValue(command_buffer[1]);
switch (type_id) {
case 0:
case 1:
type = BreakpointType::Execute;
break;
case 2:
type = BreakpointType::Write;
break;
case 3:
type = BreakpointType::Read;
break;
case 4:
type = BreakpointType::Access;
break;
default:
return SendReply("E01");
}
auto start_offset = command_buffer + 3;
auto addr_pos = std::find(start_offset, command_buffer + command_length, ',');
VAddr addr = HexToLong(start_offset, static_cast<u64>(addr_pos - start_offset));
if (type == BreakpointType::Access) {
// Access is made up of Read and Write types, so add both breakpoints
type = BreakpointType::Read;
RemoveBreakpoint(type, addr);
type = BreakpointType::Write;
}
RemoveBreakpoint(type, addr);
SendReply("OK");
}
void HandlePacket() {
if (!IsConnected()) {
return;
}
if (!IsDataAvailable()) {
return;
}
ReadCommand();
if (command_length == 0) {
return;
}
LOG_DEBUG(Debug_GDBStub, "Packet: {}", command_buffer);
switch (command_buffer[0]) {
case 'q':
HandleQuery();
break;
case 'H':
HandleSetThread();
break;
case '?':
SendSignal(current_thread, latest_signal);
break;
case 'k':
Shutdown();
LOG_INFO(Debug_GDBStub, "killed by gdb");
return;
case 'g':
ReadRegisters();
break;
case 'G':
WriteRegisters();
break;
case 'p':
ReadRegister();
break;
case 'P':
WriteRegister();
break;
case 'm':
ReadMemory();
break;
case 'M':
WriteMemory();
break;
case 's':
Step();
return;
case 'C':
case 'c':
Continue();
return;
case 'z':
RemoveBreakpoint();
break;
case 'Z':
AddBreakpoint();
break;
case 'T':
HandleThreadAlive();
break;
default:
SendReply("");
break;
}
}
void SetServerPort(u16 port) {
gdbstub_port = port;
}
void ToggleServer(bool status) {
if (status) {
server_enabled = status;
// Start server
if (!IsConnected() && Core::System::GetInstance().IsPoweredOn()) {
Init();
}
} else {
// Stop server
if (IsConnected()) {
Shutdown();
}
server_enabled = status;
}
}
static void Init(u16 port) {
if (!server_enabled) {
// Set the halt loop to false in case the user enabled the gdbstub mid-execution.
// This way the CPU can still execute normally.
halt_loop = false;
step_loop = false;
return;
}
// Setup initial gdbstub status
halt_loop = true;
step_loop = false;
breakpoints_execute.clear();
breakpoints_read.clear();
breakpoints_write.clear();
modules.clear();
// Start gdb server
LOG_INFO(Debug_GDBStub, "Starting GDB server on port {}...", port);
sockaddr_in saddr_server = {};
saddr_server.sin_family = AF_INET;
saddr_server.sin_port = htons(port);
saddr_server.sin_addr.s_addr = INADDR_ANY;
#ifdef _WIN32
WSAStartup(MAKEWORD(2, 2), &InitData);
#endif
int tmpsock = static_cast<int>(socket(PF_INET, SOCK_STREAM, 0));
if (tmpsock == -1) {
LOG_ERROR(Debug_GDBStub, "Failed to create gdb socket");
}
// Set socket to SO_REUSEADDR so it can always bind on the same port
int reuse_enabled = 1;
if (setsockopt(tmpsock, SOL_SOCKET, SO_REUSEADDR, (const char*)&reuse_enabled,
sizeof(reuse_enabled)) < 0) {
LOG_ERROR(Debug_GDBStub, "Failed to set gdb socket option");
}
const sockaddr* server_addr = reinterpret_cast<const sockaddr*>(&saddr_server);
socklen_t server_addrlen = sizeof(saddr_server);
if (bind(tmpsock, server_addr, server_addrlen) < 0) {
LOG_ERROR(Debug_GDBStub, "Failed to bind gdb socket");
}
if (listen(tmpsock, 1) < 0) {
LOG_ERROR(Debug_GDBStub, "Failed to listen to gdb socket");
}
// Wait for gdb to connect
LOG_INFO(Debug_GDBStub, "Waiting for gdb to connect...");
sockaddr_in saddr_client;
sockaddr* client_addr = reinterpret_cast<sockaddr*>(&saddr_client);
socklen_t client_addrlen = sizeof(saddr_client);
gdbserver_socket = static_cast<int>(accept(tmpsock, client_addr, &client_addrlen));
if (gdbserver_socket < 0) {
// In the case that we couldn't start the server for whatever reason, just start CPU
// execution like normal.
halt_loop = false;
step_loop = false;
LOG_ERROR(Debug_GDBStub, "Failed to accept gdb client");
} else {
LOG_INFO(Debug_GDBStub, "Client connected.");
saddr_client.sin_addr.s_addr = ntohl(saddr_client.sin_addr.s_addr);
}
// Clean up temporary socket if it's still alive at this point.
if (tmpsock != -1) {
shutdown(tmpsock, SHUT_RDWR);
}
}
void Init() {
Init(gdbstub_port);
}
void Shutdown() {
if (!server_enabled) {
return;
}
LOG_INFO(Debug_GDBStub, "Stopping GDB ...");
if (gdbserver_socket != -1) {
shutdown(gdbserver_socket, SHUT_RDWR);
gdbserver_socket = -1;
}
#ifdef _WIN32
WSACleanup();
#endif
LOG_INFO(Debug_GDBStub, "GDB stopped.");
}
bool IsServerEnabled() {
return server_enabled;
}
bool IsConnected() {
return IsServerEnabled() && gdbserver_socket != -1;
}
bool GetCpuHaltFlag() {
return halt_loop;
}
bool GetCpuStepFlag() {
return step_loop;
}
void SetCpuStepFlag(bool is_step) {
step_loop = is_step;
}
void SendTrap(Kernel::Thread* thread, int trap) {
if (send_trap) {
if (!halt_loop || current_thread == thread) {
current_thread = thread;
SendSignal(thread, trap);
}
halt_loop = true;
send_trap = false;
}
}
}; // namespace GDBStub