yuzu/src/video_core/shader/decode/arithmetic.cpp

155 lines
5.8 KiB
C++

// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/assert.h"
#include "common/common_types.h"
#include "video_core/engines/shader_bytecode.h"
#include "video_core/shader/shader_ir.h"
namespace VideoCommon::Shader {
using Tegra::Shader::Instruction;
using Tegra::Shader::OpCode;
using Tegra::Shader::SubOp;
u32 ShaderIR::DecodeArithmetic(BasicBlock& bb, const BasicBlock& code, u32 pc) {
const Instruction instr = {program_code[pc]};
const auto opcode = OpCode::Decode(instr);
Node op_a = GetRegister(instr.gpr8);
Node op_b = [&]() -> Node {
if (instr.is_b_imm) {
return GetImmediate19(instr);
} else if (instr.is_b_gpr) {
return GetRegister(instr.gpr20);
} else {
return GetConstBuffer(instr.cbuf34.index, instr.cbuf34.offset);
}
}();
switch (opcode->get().GetId()) {
case OpCode::Id::MOV_C:
case OpCode::Id::MOV_R: {
// MOV does not have neither 'abs' nor 'neg' bits.
SetRegister(bb, instr.gpr0, op_b);
break;
}
case OpCode::Id::FMUL_C:
case OpCode::Id::FMUL_R:
case OpCode::Id::FMUL_IMM: {
// FMUL does not have 'abs' bits and only the second operand has a 'neg' bit.
UNIMPLEMENTED_IF_MSG(instr.fmul.tab5cb8_2 != 0, "FMUL tab5cb8_2({}) is not implemented",
instr.fmul.tab5cb8_2.Value());
UNIMPLEMENTED_IF_MSG(
instr.fmul.tab5c68_0 != 1, "FMUL tab5cb8_0({}) is not implemented",
instr.fmul.tab5c68_0.Value()); // SMO typical sends 1 here which seems to be the default
op_b = GetOperandAbsNegFloat(op_b, false, instr.fmul.negate_b);
// TODO(Rodrigo): Should precise be used when there's a postfactor?
Node value = Operation(OperationCode::FMul, PRECISE, op_a, op_b);
if (instr.fmul.postfactor != 0) {
auto postfactor = static_cast<s32>(instr.fmul.postfactor);
// Postfactor encoded as 3-bit 1's complement in instruction, interpreted with below
// logic.
if (postfactor >= 4) {
postfactor = 7 - postfactor;
} else {
postfactor = 0 - postfactor;
}
if (postfactor > 0) {
value = Operation(OperationCode::FMul, NO_PRECISE, value,
Immediate(static_cast<f32>(1 << postfactor)));
} else {
value = Operation(OperationCode::FDiv, NO_PRECISE, value,
Immediate(static_cast<f32>(1 << -postfactor)));
}
}
value = GetSaturatedFloat(value, instr.alu.saturate_d);
SetInternalFlagsFromFloat(bb, value, instr.generates_cc);
SetRegister(bb, instr.gpr0, value);
break;
}
case OpCode::Id::FADD_C:
case OpCode::Id::FADD_R:
case OpCode::Id::FADD_IMM: {
op_a = GetOperandAbsNegFloat(op_a, instr.alu.abs_a, instr.alu.negate_a);
op_b = GetOperandAbsNegFloat(op_b, instr.alu.abs_b, instr.alu.negate_b);
Node value = Operation(OperationCode::FAdd, PRECISE, op_a, op_b);
value = GetSaturatedFloat(value, instr.alu.saturate_d);
SetInternalFlagsFromFloat(bb, value, instr.generates_cc);
SetRegister(bb, instr.gpr0, value);
break;
}
case OpCode::Id::MUFU: {
op_a = GetOperandAbsNegFloat(op_a, instr.alu.abs_a, instr.alu.negate_a);
Node value = [&]() {
switch (instr.sub_op) {
case SubOp::Cos:
return Operation(OperationCode::FCos, PRECISE, op_a);
case SubOp::Sin:
return Operation(OperationCode::FSin, PRECISE, op_a);
case SubOp::Ex2:
return Operation(OperationCode::FExp2, PRECISE, op_a);
case SubOp::Lg2:
return Operation(OperationCode::FLog2, PRECISE, op_a);
case SubOp::Rcp:
return Operation(OperationCode::FDiv, PRECISE, Immediate(1.0f), op_a);
case SubOp::Rsq:
return Operation(OperationCode::FInverseSqrt, PRECISE, op_a);
case SubOp::Sqrt:
return Operation(OperationCode::FSqrt, PRECISE, op_a);
default:
UNIMPLEMENTED_MSG("Unhandled MUFU sub op={0:x}",
static_cast<unsigned>(instr.sub_op.Value()));
return Immediate(0);
}
}();
value = GetSaturatedFloat(value, instr.alu.saturate_d);
SetRegister(bb, instr.gpr0, value);
break;
}
case OpCode::Id::FMNMX_C:
case OpCode::Id::FMNMX_R:
case OpCode::Id::FMNMX_IMM: {
op_a = GetOperandAbsNegFloat(op_a, instr.alu.abs_a, instr.alu.negate_a);
op_b = GetOperandAbsNegFloat(op_b, instr.alu.abs_b, instr.alu.negate_b);
const Node condition = GetPredicate(instr.alu.fmnmx.pred, instr.alu.fmnmx.negate_pred != 0);
const Node min = Operation(OperationCode::FMin, NO_PRECISE, op_a, op_b);
const Node max = Operation(OperationCode::FMax, NO_PRECISE, op_a, op_b);
const Node value = Operation(OperationCode::Select, NO_PRECISE, condition, min, max);
SetInternalFlagsFromFloat(bb, value, instr.generates_cc);
SetRegister(bb, instr.gpr0, value);
break;
}
case OpCode::Id::RRO_C:
case OpCode::Id::RRO_R:
case OpCode::Id::RRO_IMM: {
// Currently RRO is only implemented as a register move.
op_b = GetOperandAbsNegFloat(op_b, instr.alu.abs_b, instr.alu.negate_b);
SetRegister(bb, instr.gpr0, op_b);
LOG_WARNING(HW_GPU, "RRO instruction is incomplete");
break;
}
default:
UNIMPLEMENTED_MSG("Unhandled arithmetic instruction: {}", opcode->get().GetName());
}
return pc;
}
} // namespace VideoCommon::Shader