367 lines
15 KiB
C++
367 lines
15 KiB
C++
// SPDX-FileCopyrightText: 2021 Skyline Team and Contributors
|
|
// SPDX-License-Identifier: GPL-3.0-or-later
|
|
|
|
#include "common/address_space.h"
|
|
#include "common/assert.h"
|
|
|
|
#define MAP_MEMBER(returnType) \
|
|
template <typename VaType, VaType UnmappedVa, typename PaType, PaType UnmappedPa, \
|
|
bool PaContigSplit, size_t AddressSpaceBits, typename ExtraBlockInfo> \
|
|
requires AddressSpaceValid<VaType, AddressSpaceBits> returnType FlatAddressSpaceMap< \
|
|
VaType, UnmappedVa, PaType, UnmappedPa, PaContigSplit, AddressSpaceBits, ExtraBlockInfo>
|
|
#define MAP_MEMBER_CONST() \
|
|
template <typename VaType, VaType UnmappedVa, typename PaType, PaType UnmappedPa, \
|
|
bool PaContigSplit, size_t AddressSpaceBits, typename ExtraBlockInfo> \
|
|
requires AddressSpaceValid<VaType, AddressSpaceBits> FlatAddressSpaceMap< \
|
|
VaType, UnmappedVa, PaType, UnmappedPa, PaContigSplit, AddressSpaceBits, ExtraBlockInfo>
|
|
|
|
#define MM_MEMBER(returnType) \
|
|
template <typename VaType, VaType UnmappedVa, size_t AddressSpaceBits> \
|
|
requires AddressSpaceValid<VaType, AddressSpaceBits> returnType \
|
|
FlatMemoryManager<VaType, UnmappedVa, AddressSpaceBits>
|
|
|
|
#define ALLOC_MEMBER(returnType) \
|
|
template <typename VaType, VaType UnmappedVa, size_t AddressSpaceBits> \
|
|
requires AddressSpaceValid<VaType, AddressSpaceBits> returnType \
|
|
FlatAllocator<VaType, UnmappedVa, AddressSpaceBits>
|
|
#define ALLOC_MEMBER_CONST() \
|
|
template <typename VaType, VaType UnmappedVa, size_t AddressSpaceBits> \
|
|
requires AddressSpaceValid<VaType, AddressSpaceBits> \
|
|
FlatAllocator<VaType, UnmappedVa, AddressSpaceBits>
|
|
|
|
namespace Common {
|
|
MAP_MEMBER_CONST()::FlatAddressSpaceMap(VaType va_limit_,
|
|
std::function<void(VaType, VaType)> unmap_callback_)
|
|
: va_limit{va_limit_}, unmap_callback{std::move(unmap_callback_)} {
|
|
if (va_limit > VaMaximum) {
|
|
ASSERT_MSG(false, "Invalid VA limit!");
|
|
}
|
|
}
|
|
|
|
MAP_MEMBER(void)::MapLocked(VaType virt, PaType phys, VaType size, ExtraBlockInfo extra_info) {
|
|
VaType virt_end{virt + size};
|
|
|
|
if (virt_end > va_limit) {
|
|
ASSERT_MSG(false,
|
|
"Trying to map a block past the VA limit: virt_end: 0x{:X}, va_limit: 0x{:X}",
|
|
virt_end, va_limit);
|
|
}
|
|
|
|
auto block_end_successor{std::lower_bound(blocks.begin(), blocks.end(), virt_end)};
|
|
if (block_end_successor == blocks.begin()) {
|
|
ASSERT_MSG(false, "Trying to map a block before the VA start: virt_end: 0x{:X}", virt_end);
|
|
}
|
|
|
|
auto block_end_predecessor{std::prev(block_end_successor)};
|
|
|
|
if (block_end_successor != blocks.end()) {
|
|
// We have blocks in front of us, if one is directly in front then we don't have to add a
|
|
// tail
|
|
if (block_end_successor->virt != virt_end) {
|
|
PaType tailPhys{[&]() -> PaType {
|
|
if constexpr (!PaContigSplit) {
|
|
// Always propagate unmapped regions rather than calculating offset
|
|
return block_end_predecessor->phys;
|
|
} else {
|
|
if (block_end_predecessor->Unmapped()) {
|
|
// Always propagate unmapped regions rather than calculating offset
|
|
return block_end_predecessor->phys;
|
|
} else {
|
|
return block_end_predecessor->phys + virt_end - block_end_predecessor->virt;
|
|
}
|
|
}
|
|
}()};
|
|
|
|
if (block_end_predecessor != blocks.begin() && block_end_predecessor->virt >= virt) {
|
|
// If this block's start would be overlapped by the map then reuse it as a tail
|
|
// block
|
|
block_end_predecessor->virt = virt_end;
|
|
block_end_predecessor->phys = tailPhys;
|
|
block_end_predecessor->extra_info = block_end_predecessor->extra_info;
|
|
|
|
// No longer predecessor anymore
|
|
block_end_successor = block_end_predecessor--;
|
|
} else {
|
|
// Else insert a new one and we're done
|
|
blocks.insert(block_end_successor,
|
|
{Block(virt, phys, extra_info),
|
|
Block(virt_end, tailPhys, block_end_predecessor->extra_info)});
|
|
if (unmap_callback) {
|
|
unmap_callback(virt, size);
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
// block_end_predecessor will always be unmapped as blocks has to be terminated by an
|
|
// unmapped chunk
|
|
if (block_end_predecessor != blocks.begin() && block_end_predecessor->virt >= virt) {
|
|
// Move the unmapped block start backwards
|
|
block_end_predecessor->virt = virt_end;
|
|
|
|
// No longer predecessor anymore
|
|
block_end_successor = block_end_predecessor--;
|
|
} else {
|
|
// Else insert a new one and we're done
|
|
blocks.insert(block_end_successor,
|
|
{Block(virt, phys, extra_info), Block(virt_end, UnmappedPa, {})});
|
|
if (unmap_callback) {
|
|
unmap_callback(virt, size);
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
auto block_start_successor{block_end_successor};
|
|
|
|
// Walk the block vector to find the start successor as this is more efficient than another
|
|
// binary search in most scenarios
|
|
while (std::prev(block_start_successor)->virt >= virt) {
|
|
block_start_successor--;
|
|
}
|
|
|
|
// Check that the start successor is either the end block or something in between
|
|
if (block_start_successor->virt > virt_end) {
|
|
ASSERT_MSG(false, "Unsorted block in AS map: virt: 0x{:X}", block_start_successor->virt);
|
|
} else if (block_start_successor->virt == virt_end) {
|
|
// We need to create a new block as there are none spare that we would overwrite
|
|
blocks.insert(block_start_successor, Block(virt, phys, extra_info));
|
|
} else {
|
|
// Erase overwritten blocks
|
|
if (auto eraseStart{std::next(block_start_successor)}; eraseStart != block_end_successor) {
|
|
blocks.erase(eraseStart, block_end_successor);
|
|
}
|
|
|
|
// Reuse a block that would otherwise be overwritten as a start block
|
|
block_start_successor->virt = virt;
|
|
block_start_successor->phys = phys;
|
|
block_start_successor->extra_info = extra_info;
|
|
}
|
|
|
|
if (unmap_callback) {
|
|
unmap_callback(virt, size);
|
|
}
|
|
}
|
|
|
|
MAP_MEMBER(void)::UnmapLocked(VaType virt, VaType size) {
|
|
VaType virt_end{virt + size};
|
|
|
|
if (virt_end > va_limit) {
|
|
ASSERT_MSG(false,
|
|
"Trying to map a block past the VA limit: virt_end: 0x{:X}, va_limit: 0x{:X}",
|
|
virt_end, va_limit);
|
|
}
|
|
|
|
auto block_end_successor{std::lower_bound(blocks.begin(), blocks.end(), virt_end)};
|
|
if (block_end_successor == blocks.begin()) {
|
|
ASSERT_MSG(false, "Trying to unmap a block before the VA start: virt_end: 0x{:X}",
|
|
virt_end);
|
|
}
|
|
|
|
auto block_end_predecessor{std::prev(block_end_successor)};
|
|
|
|
auto walk_back_to_predecessor{[&](auto iter) {
|
|
while (iter->virt >= virt) {
|
|
iter--;
|
|
}
|
|
|
|
return iter;
|
|
}};
|
|
|
|
auto erase_blocks_with_end_unmapped{[&](auto unmappedEnd) {
|
|
auto block_start_predecessor{walk_back_to_predecessor(unmappedEnd)};
|
|
auto block_start_successor{std::next(block_start_predecessor)};
|
|
|
|
auto eraseEnd{[&]() {
|
|
if (block_start_predecessor->Unmapped()) {
|
|
// If the start predecessor is unmapped then we can erase everything in our region
|
|
// and be done
|
|
return std::next(unmappedEnd);
|
|
} else {
|
|
// Else reuse the end predecessor as the start of our unmapped region then erase all
|
|
// up to it
|
|
unmappedEnd->virt = virt;
|
|
return unmappedEnd;
|
|
}
|
|
}()};
|
|
|
|
// We can't have two unmapped regions after each other
|
|
if (eraseEnd != blocks.end() &&
|
|
(eraseEnd == block_start_successor ||
|
|
(block_start_predecessor->Unmapped() && eraseEnd->Unmapped()))) {
|
|
ASSERT_MSG(false, "Multiple contiguous unmapped regions are unsupported!");
|
|
}
|
|
|
|
blocks.erase(block_start_successor, eraseEnd);
|
|
}};
|
|
|
|
// We can avoid any splitting logic if these are the case
|
|
if (block_end_predecessor->Unmapped()) {
|
|
if (block_end_predecessor->virt > virt) {
|
|
erase_blocks_with_end_unmapped(block_end_predecessor);
|
|
}
|
|
|
|
if (unmap_callback) {
|
|
unmap_callback(virt, size);
|
|
}
|
|
|
|
return; // The region is unmapped, bail out early
|
|
} else if (block_end_successor->virt == virt_end && block_end_successor->Unmapped()) {
|
|
erase_blocks_with_end_unmapped(block_end_successor);
|
|
|
|
if (unmap_callback) {
|
|
unmap_callback(virt, size);
|
|
}
|
|
|
|
return; // The region is unmapped here and doesn't need splitting, bail out early
|
|
} else if (block_end_successor == blocks.end()) {
|
|
// This should never happen as the end should always follow an unmapped block
|
|
ASSERT_MSG(false, "Unexpected Memory Manager state!");
|
|
} else if (block_end_successor->virt != virt_end) {
|
|
// If one block is directly in front then we don't have to add a tail
|
|
|
|
// The previous block is mapped so we will need to add a tail with an offset
|
|
PaType tailPhys{[&]() {
|
|
if constexpr (PaContigSplit) {
|
|
return block_end_predecessor->phys + virt_end - block_end_predecessor->virt;
|
|
} else {
|
|
return block_end_predecessor->phys;
|
|
}
|
|
}()};
|
|
|
|
if (block_end_predecessor->virt >= virt) {
|
|
// If this block's start would be overlapped by the unmap then reuse it as a tail block
|
|
block_end_predecessor->virt = virt_end;
|
|
block_end_predecessor->phys = tailPhys;
|
|
|
|
// No longer predecessor anymore
|
|
block_end_successor = block_end_predecessor--;
|
|
} else {
|
|
blocks.insert(block_end_successor,
|
|
{Block(virt, UnmappedPa, {}),
|
|
Block(virt_end, tailPhys, block_end_predecessor->extra_info)});
|
|
if (unmap_callback) {
|
|
unmap_callback(virt, size);
|
|
}
|
|
|
|
// The previous block is mapped and ends before
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Walk the block vector to find the start predecessor as this is more efficient than another
|
|
// binary search in most scenarios
|
|
auto block_start_predecessor{walk_back_to_predecessor(block_end_successor)};
|
|
auto block_start_successor{std::next(block_start_predecessor)};
|
|
|
|
if (block_start_successor->virt > virt_end) {
|
|
ASSERT_MSG(false, "Unsorted block in AS map: virt: 0x{:X}", block_start_successor->virt);
|
|
} else if (block_start_successor->virt == virt_end) {
|
|
// There are no blocks between the start and the end that would let us skip inserting a new
|
|
// one for head
|
|
|
|
// The previous block is may be unmapped, if so we don't need to insert any unmaps after it
|
|
if (block_start_predecessor->Mapped()) {
|
|
blocks.insert(block_start_successor, Block(virt, UnmappedPa, {}));
|
|
}
|
|
} else if (block_start_predecessor->Unmapped()) {
|
|
// If the previous block is unmapped
|
|
blocks.erase(block_start_successor, block_end_predecessor);
|
|
} else {
|
|
// Erase overwritten blocks, skipping the first one as we have written the unmapped start
|
|
// block there
|
|
if (auto eraseStart{std::next(block_start_successor)}; eraseStart != block_end_successor) {
|
|
blocks.erase(eraseStart, block_end_successor);
|
|
}
|
|
|
|
// Add in the unmapped block header
|
|
block_start_successor->virt = virt;
|
|
block_start_successor->phys = UnmappedPa;
|
|
}
|
|
|
|
if (unmap_callback)
|
|
unmap_callback(virt, size);
|
|
}
|
|
|
|
ALLOC_MEMBER_CONST()::FlatAllocator(VaType virt_start_, VaType va_limit_)
|
|
: Base{va_limit_}, virt_start{virt_start_}, current_linear_alloc_end{virt_start_} {}
|
|
|
|
ALLOC_MEMBER(VaType)::Allocate(VaType size) {
|
|
std::scoped_lock lock(this->block_mutex);
|
|
|
|
VaType alloc_start{UnmappedVa};
|
|
VaType alloc_end{current_linear_alloc_end + size};
|
|
|
|
// Avoid searching backwards in the address space if possible
|
|
if (alloc_end >= current_linear_alloc_end && alloc_end <= this->va_limit) {
|
|
auto alloc_end_successor{
|
|
std::lower_bound(this->blocks.begin(), this->blocks.end(), alloc_end)};
|
|
if (alloc_end_successor == this->blocks.begin()) {
|
|
ASSERT_MSG(false, "First block in AS map is invalid!");
|
|
}
|
|
|
|
auto alloc_end_predecessor{std::prev(alloc_end_successor)};
|
|
if (alloc_end_predecessor->virt <= current_linear_alloc_end) {
|
|
alloc_start = current_linear_alloc_end;
|
|
} else {
|
|
// Skip over fixed any mappings in front of us
|
|
while (alloc_end_successor != this->blocks.end()) {
|
|
if (alloc_end_successor->virt - alloc_end_predecessor->virt < size ||
|
|
alloc_end_predecessor->Mapped()) {
|
|
alloc_start = alloc_end_predecessor->virt;
|
|
break;
|
|
}
|
|
|
|
alloc_end_predecessor = alloc_end_successor++;
|
|
|
|
// Use the VA limit to calculate if we can fit in the final block since it has no
|
|
// successor
|
|
if (alloc_end_successor == this->blocks.end()) {
|
|
alloc_end = alloc_end_predecessor->virt + size;
|
|
|
|
if (alloc_end >= alloc_end_predecessor->virt && alloc_end <= this->va_limit) {
|
|
alloc_start = alloc_end_predecessor->virt;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (alloc_start != UnmappedVa) {
|
|
current_linear_alloc_end = alloc_start + size;
|
|
} else { // If linear allocation overflows the AS then find a gap
|
|
if (this->blocks.size() <= 2) {
|
|
ASSERT_MSG(false, "Unexpected allocator state!");
|
|
}
|
|
|
|
auto search_predecessor{this->blocks.begin()};
|
|
auto search_successor{std::next(search_predecessor)};
|
|
|
|
while (search_successor != this->blocks.end() &&
|
|
(search_successor->virt - search_predecessor->virt < size ||
|
|
search_predecessor->Mapped())) {
|
|
search_predecessor = search_successor++;
|
|
}
|
|
|
|
if (search_successor != this->blocks.end()) {
|
|
alloc_start = search_predecessor->virt;
|
|
} else {
|
|
return {}; // AS is full
|
|
}
|
|
}
|
|
|
|
this->MapLocked(alloc_start, true, size, {});
|
|
return alloc_start;
|
|
}
|
|
|
|
ALLOC_MEMBER(void)::AllocateFixed(VaType virt, VaType size) {
|
|
this->Map(virt, true, size);
|
|
}
|
|
|
|
ALLOC_MEMBER(void)::Free(VaType virt, VaType size) {
|
|
this->Unmap(virt, size);
|
|
}
|
|
} // namespace Common
|