yuzu/src/core/hle/kernel/kernel.cpp
Lioncash 5d46038c5c kernel/resource_limit: Clean up interface
Cleans out the citra/3DS-specific implementation details that don't
apply to the Switch. Sets the stage for implementing ResourceLimit
instances properly.

While we're at it, remove the erroneous checks within CreateThread() and
SetThreadPriority(). While these are indeed checked in some capacity,
they are not checked via a ResourceLimit instance.

In the process of moving out Citra-specifics, this also replaces the
system ResourceLimit instance's values with ones from the Switch.
2018-11-19 18:16:39 -05:00

274 lines
8.9 KiB
C++

// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <array>
#include <atomic>
#include <memory>
#include <mutex>
#include <utility>
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/client_port.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/timer.h"
#include "core/hle/lock.h"
#include "core/hle/result.h"
namespace Kernel {
/**
* Callback that will wake up the thread it was scheduled for
* @param thread_handle The handle of the thread that's been awoken
* @param cycles_late The number of CPU cycles that have passed since the desired wakeup time
*/
static void ThreadWakeupCallback(u64 thread_handle, [[maybe_unused]] int cycles_late) {
const auto proper_handle = static_cast<Handle>(thread_handle);
const auto& system = Core::System::GetInstance();
// Lock the global kernel mutex when we enter the kernel HLE.
std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock);
SharedPtr<Thread> thread =
system.Kernel().RetrieveThreadFromWakeupCallbackHandleTable(proper_handle);
if (thread == nullptr) {
LOG_CRITICAL(Kernel, "Callback fired for invalid thread {:08X}", proper_handle);
return;
}
bool resume = true;
if (thread->GetStatus() == ThreadStatus::WaitSynchAny ||
thread->GetStatus() == ThreadStatus::WaitSynchAll ||
thread->GetStatus() == ThreadStatus::WaitHLEEvent) {
// Remove the thread from each of its waiting objects' waitlists
for (const auto& object : thread->GetWaitObjects()) {
object->RemoveWaitingThread(thread.get());
}
thread->ClearWaitObjects();
// Invoke the wakeup callback before clearing the wait objects
if (thread->HasWakeupCallback()) {
resume = thread->InvokeWakeupCallback(ThreadWakeupReason::Timeout, thread, nullptr, 0);
}
}
if (thread->GetMutexWaitAddress() != 0 || thread->GetCondVarWaitAddress() != 0 ||
thread->GetWaitHandle() != 0) {
ASSERT(thread->GetStatus() == ThreadStatus::WaitMutex);
thread->SetMutexWaitAddress(0);
thread->SetCondVarWaitAddress(0);
thread->SetWaitHandle(0);
auto* const lock_owner = thread->GetLockOwner();
// Threads waking up by timeout from WaitProcessWideKey do not perform priority inheritance
// and don't have a lock owner unless SignalProcessWideKey was called first and the thread
// wasn't awakened due to the mutex already being acquired.
if (lock_owner != nullptr) {
lock_owner->RemoveMutexWaiter(thread);
}
}
if (thread->GetArbiterWaitAddress() != 0) {
ASSERT(thread->GetStatus() == ThreadStatus::WaitArb);
thread->SetArbiterWaitAddress(0);
}
if (resume) {
thread->ResumeFromWait();
}
}
/// The timer callback event, called when a timer is fired
static void TimerCallback(u64 timer_handle, int cycles_late) {
const auto proper_handle = static_cast<Handle>(timer_handle);
const auto& system = Core::System::GetInstance();
SharedPtr<Timer> timer = system.Kernel().RetrieveTimerFromCallbackHandleTable(proper_handle);
if (timer == nullptr) {
LOG_CRITICAL(Kernel, "Callback fired for invalid timer {:016X}", timer_handle);
return;
}
timer->Signal(cycles_late);
}
struct KernelCore::Impl {
void Initialize(KernelCore& kernel) {
Shutdown();
InitializeSystemResourceLimit(kernel);
InitializeThreads();
InitializeTimers();
}
void Shutdown() {
next_object_id = 0;
next_process_id = 10;
next_thread_id = 1;
process_list.clear();
current_process = nullptr;
system_resource_limit = nullptr;
thread_wakeup_callback_handle_table.Clear();
thread_wakeup_event_type = nullptr;
timer_callback_handle_table.Clear();
timer_callback_event_type = nullptr;
named_ports.clear();
}
// Creates the default system resource limit
void InitializeSystemResourceLimit(KernelCore& kernel) {
system_resource_limit = ResourceLimit::Create(kernel, "System");
// If setting the default system values fails, then something seriously wrong has occurred.
ASSERT(system_resource_limit->SetLimitValue(ResourceType::PhysicalMemory, 0x200000000)
.IsSuccess());
ASSERT(system_resource_limit->SetLimitValue(ResourceType::Threads, 800).IsSuccess());
ASSERT(system_resource_limit->SetLimitValue(ResourceType::Events, 700).IsSuccess());
ASSERT(system_resource_limit->SetLimitValue(ResourceType::TransferMemory, 200).IsSuccess());
ASSERT(system_resource_limit->SetLimitValue(ResourceType::Sessions, 900).IsSuccess());
}
void InitializeThreads() {
thread_wakeup_event_type =
CoreTiming::RegisterEvent("ThreadWakeupCallback", ThreadWakeupCallback);
}
void InitializeTimers() {
timer_callback_handle_table.Clear();
timer_callback_event_type = CoreTiming::RegisterEvent("TimerCallback", TimerCallback);
}
std::atomic<u32> next_object_id{0};
// TODO(Subv): Start the process ids from 10 for now, as lower PIDs are
// reserved for low-level services
std::atomic<u32> next_process_id{10};
std::atomic<u32> next_thread_id{1};
// Lists all processes that exist in the current session.
std::vector<SharedPtr<Process>> process_list;
Process* current_process = nullptr;
SharedPtr<ResourceLimit> system_resource_limit;
/// The event type of the generic timer callback event
CoreTiming::EventType* timer_callback_event_type = nullptr;
// TODO(yuriks): This can be removed if Timer objects are explicitly pooled in the future,
// allowing us to simply use a pool index or similar.
Kernel::HandleTable timer_callback_handle_table;
CoreTiming::EventType* thread_wakeup_event_type = nullptr;
// TODO(yuriks): This can be removed if Thread objects are explicitly pooled in the future,
// allowing us to simply use a pool index or similar.
Kernel::HandleTable thread_wakeup_callback_handle_table;
/// Map of named ports managed by the kernel, which can be retrieved using
/// the ConnectToPort SVC.
NamedPortTable named_ports;
};
KernelCore::KernelCore() : impl{std::make_unique<Impl>()} {}
KernelCore::~KernelCore() {
Shutdown();
}
void KernelCore::Initialize() {
impl->Initialize(*this);
}
void KernelCore::Shutdown() {
impl->Shutdown();
}
SharedPtr<ResourceLimit> KernelCore::GetSystemResourceLimit() const {
return impl->system_resource_limit;
}
SharedPtr<Thread> KernelCore::RetrieveThreadFromWakeupCallbackHandleTable(Handle handle) const {
return impl->thread_wakeup_callback_handle_table.Get<Thread>(handle);
}
SharedPtr<Timer> KernelCore::RetrieveTimerFromCallbackHandleTable(Handle handle) const {
return impl->timer_callback_handle_table.Get<Timer>(handle);
}
void KernelCore::AppendNewProcess(SharedPtr<Process> process) {
impl->process_list.push_back(std::move(process));
}
void KernelCore::MakeCurrentProcess(Process* process) {
impl->current_process = process;
}
Process* KernelCore::CurrentProcess() {
return impl->current_process;
}
const Process* KernelCore::CurrentProcess() const {
return impl->current_process;
}
void KernelCore::AddNamedPort(std::string name, SharedPtr<ClientPort> port) {
impl->named_ports.emplace(std::move(name), std::move(port));
}
KernelCore::NamedPortTable::iterator KernelCore::FindNamedPort(const std::string& name) {
return impl->named_ports.find(name);
}
KernelCore::NamedPortTable::const_iterator KernelCore::FindNamedPort(
const std::string& name) const {
return impl->named_ports.find(name);
}
bool KernelCore::IsValidNamedPort(NamedPortTable::const_iterator port) const {
return port != impl->named_ports.cend();
}
u32 KernelCore::CreateNewObjectID() {
return impl->next_object_id++;
}
u32 KernelCore::CreateNewThreadID() {
return impl->next_thread_id++;
}
u32 KernelCore::CreateNewProcessID() {
return impl->next_process_id++;
}
ResultVal<Handle> KernelCore::CreateTimerCallbackHandle(const SharedPtr<Timer>& timer) {
return impl->timer_callback_handle_table.Create(timer);
}
CoreTiming::EventType* KernelCore::ThreadWakeupCallbackEventType() const {
return impl->thread_wakeup_event_type;
}
CoreTiming::EventType* KernelCore::TimerCallbackEventType() const {
return impl->timer_callback_event_type;
}
Kernel::HandleTable& KernelCore::ThreadWakeupCallbackHandleTable() {
return impl->thread_wakeup_callback_handle_table;
}
const Kernel::HandleTable& KernelCore::ThreadWakeupCallbackHandleTable() const {
return impl->thread_wakeup_callback_handle_table;
}
} // namespace Kernel