yuzu/src/core/hle/kernel/vm_manager.cpp
Lioncash 6c6f95d071 svc: Report correct memory-related values within some of the cases in svcGetInfo()
Previously, these were reporting hardcoded values, but given the regions
can change depending on the requested address spaces, these need to
report the values that the memory manager contains.
2018-09-24 22:16:03 -04:00

554 lines
18 KiB
C++

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <iterator>
#include <utility>
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/file_sys/program_metadata.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/memory.h"
#include "core/memory_hook.h"
#include "core/memory_setup.h"
namespace Kernel {
static const char* GetMemoryStateName(MemoryState state) {
static constexpr const char* names[] = {
"Unmapped", "Io",
"Normal", "CodeStatic",
"CodeMutable", "Heap",
"Shared", "Unknown1",
"ModuleCodeStatic", "ModuleCodeMutable",
"IpcBuffer0", "Mapped",
"ThreadLocal", "TransferMemoryIsolated",
"TransferMemory", "ProcessMemory",
"Unknown2", "IpcBuffer1",
"IpcBuffer3", "KernelStack",
};
return names[static_cast<int>(state)];
}
bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const {
ASSERT(base + size == next.base);
if (permissions != next.permissions || meminfo_state != next.meminfo_state ||
type != next.type) {
return false;
}
if (type == VMAType::AllocatedMemoryBlock &&
(backing_block != next.backing_block || offset + size != next.offset)) {
return false;
}
if (type == VMAType::BackingMemory && backing_memory + size != next.backing_memory) {
return false;
}
if (type == VMAType::MMIO && paddr + size != next.paddr) {
return false;
}
return true;
}
VMManager::VMManager() {
// Default to assuming a 39-bit address space. This way we have a sane
// starting point with executables that don't provide metadata.
Reset(FileSys::ProgramAddressSpaceType::Is39Bit);
}
VMManager::~VMManager() {
Reset(FileSys::ProgramAddressSpaceType::Is39Bit);
}
void VMManager::Reset(FileSys::ProgramAddressSpaceType type) {
Clear();
InitializeMemoryRegionRanges(type);
page_table.Resize(address_space_width);
// Initialize the map with a single free region covering the entire managed space.
VirtualMemoryArea initial_vma;
initial_vma.size = address_space_end;
vma_map.emplace(initial_vma.base, initial_vma);
UpdatePageTableForVMA(initial_vma);
}
VMManager::VMAHandle VMManager::FindVMA(VAddr target) const {
if (target >= address_space_end) {
return vma_map.end();
} else {
return std::prev(vma_map.upper_bound(target));
}
}
ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
std::shared_ptr<std::vector<u8>> block,
std::size_t offset, u64 size,
MemoryState state) {
ASSERT(block != nullptr);
ASSERT(offset + size <= block->size());
// This is the appropriately sized VMA that will turn into our allocation.
CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
VirtualMemoryArea& final_vma = vma_handle->second;
ASSERT(final_vma.size == size);
auto& system = Core::System::GetInstance();
system.ArmInterface(0).MapBackingMemory(target, size, block->data() + offset,
VMAPermission::ReadWriteExecute);
system.ArmInterface(1).MapBackingMemory(target, size, block->data() + offset,
VMAPermission::ReadWriteExecute);
system.ArmInterface(2).MapBackingMemory(target, size, block->data() + offset,
VMAPermission::ReadWriteExecute);
system.ArmInterface(3).MapBackingMemory(target, size, block->data() + offset,
VMAPermission::ReadWriteExecute);
final_vma.type = VMAType::AllocatedMemoryBlock;
final_vma.permissions = VMAPermission::ReadWrite;
final_vma.meminfo_state = state;
final_vma.backing_block = std::move(block);
final_vma.offset = offset;
UpdatePageTableForVMA(final_vma);
return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
}
ResultVal<VMManager::VMAHandle> VMManager::MapBackingMemory(VAddr target, u8* memory, u64 size,
MemoryState state) {
ASSERT(memory != nullptr);
// This is the appropriately sized VMA that will turn into our allocation.
CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
VirtualMemoryArea& final_vma = vma_handle->second;
ASSERT(final_vma.size == size);
auto& system = Core::System::GetInstance();
system.ArmInterface(0).MapBackingMemory(target, size, memory, VMAPermission::ReadWriteExecute);
system.ArmInterface(1).MapBackingMemory(target, size, memory, VMAPermission::ReadWriteExecute);
system.ArmInterface(2).MapBackingMemory(target, size, memory, VMAPermission::ReadWriteExecute);
system.ArmInterface(3).MapBackingMemory(target, size, memory, VMAPermission::ReadWriteExecute);
final_vma.type = VMAType::BackingMemory;
final_vma.permissions = VMAPermission::ReadWrite;
final_vma.meminfo_state = state;
final_vma.backing_memory = memory;
UpdatePageTableForVMA(final_vma);
return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
}
ResultVal<VMManager::VMAHandle> VMManager::MapMMIO(VAddr target, PAddr paddr, u64 size,
MemoryState state,
Memory::MemoryHookPointer mmio_handler) {
// This is the appropriately sized VMA that will turn into our allocation.
CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
VirtualMemoryArea& final_vma = vma_handle->second;
ASSERT(final_vma.size == size);
final_vma.type = VMAType::MMIO;
final_vma.permissions = VMAPermission::ReadWrite;
final_vma.meminfo_state = state;
final_vma.paddr = paddr;
final_vma.mmio_handler = std::move(mmio_handler);
UpdatePageTableForVMA(final_vma);
return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
}
VMManager::VMAIter VMManager::Unmap(VMAIter vma_handle) {
VirtualMemoryArea& vma = vma_handle->second;
vma.type = VMAType::Free;
vma.permissions = VMAPermission::None;
vma.meminfo_state = MemoryState::Unmapped;
vma.backing_block = nullptr;
vma.offset = 0;
vma.backing_memory = nullptr;
vma.paddr = 0;
UpdatePageTableForVMA(vma);
return MergeAdjacent(vma_handle);
}
ResultCode VMManager::UnmapRange(VAddr target, u64 size) {
CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
const VAddr target_end = target + size;
const VMAIter end = vma_map.end();
// The comparison against the end of the range must be done using addresses since VMAs can be
// merged during this process, causing invalidation of the iterators.
while (vma != end && vma->second.base < target_end) {
vma = std::next(Unmap(vma));
}
ASSERT(FindVMA(target)->second.size >= size);
auto& system = Core::System::GetInstance();
system.ArmInterface(0).UnmapMemory(target, size);
system.ArmInterface(1).UnmapMemory(target, size);
system.ArmInterface(2).UnmapMemory(target, size);
system.ArmInterface(3).UnmapMemory(target, size);
return RESULT_SUCCESS;
}
VMManager::VMAHandle VMManager::Reprotect(VMAHandle vma_handle, VMAPermission new_perms) {
VMAIter iter = StripIterConstness(vma_handle);
VirtualMemoryArea& vma = iter->second;
vma.permissions = new_perms;
UpdatePageTableForVMA(vma);
return MergeAdjacent(iter);
}
ResultCode VMManager::ReprotectRange(VAddr target, u64 size, VMAPermission new_perms) {
CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
const VAddr target_end = target + size;
const VMAIter end = vma_map.end();
// The comparison against the end of the range must be done using addresses since VMAs can be
// merged during this process, causing invalidation of the iterators.
while (vma != end && vma->second.base < target_end) {
vma = std::next(StripIterConstness(Reprotect(vma, new_perms)));
}
return RESULT_SUCCESS;
}
void VMManager::RefreshMemoryBlockMappings(const std::vector<u8>* block) {
// If this ever proves to have a noticeable performance impact, allow users of the function to
// specify a specific range of addresses to limit the scan to.
for (const auto& p : vma_map) {
const VirtualMemoryArea& vma = p.second;
if (block == vma.backing_block.get()) {
UpdatePageTableForVMA(vma);
}
}
}
void VMManager::LogLayout() const {
for (const auto& p : vma_map) {
const VirtualMemoryArea& vma = p.second;
LOG_DEBUG(Kernel, "{:016X} - {:016X} size: {:016X} {}{}{} {}", vma.base,
vma.base + vma.size, vma.size,
(u8)vma.permissions & (u8)VMAPermission::Read ? 'R' : '-',
(u8)vma.permissions & (u8)VMAPermission::Write ? 'W' : '-',
(u8)vma.permissions & (u8)VMAPermission::Execute ? 'X' : '-',
GetMemoryStateName(vma.meminfo_state));
}
}
VMManager::VMAIter VMManager::StripIterConstness(const VMAHandle& iter) {
// This uses a neat C++ trick to convert a const_iterator to a regular iterator, given
// non-const access to its container.
return vma_map.erase(iter, iter); // Erases an empty range of elements
}
ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u64 size) {
ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x{:016X}", size);
ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x{:016X}", base);
VMAIter vma_handle = StripIterConstness(FindVMA(base));
if (vma_handle == vma_map.end()) {
// Target address is outside the range managed by the kernel
return ERR_INVALID_ADDRESS;
}
const VirtualMemoryArea& vma = vma_handle->second;
if (vma.type != VMAType::Free) {
// Region is already allocated
return ERR_INVALID_ADDRESS_STATE;
}
const VAddr start_in_vma = base - vma.base;
const VAddr end_in_vma = start_in_vma + size;
if (end_in_vma > vma.size) {
// Requested allocation doesn't fit inside VMA
return ERR_INVALID_ADDRESS_STATE;
}
if (end_in_vma != vma.size) {
// Split VMA at the end of the allocated region
SplitVMA(vma_handle, end_in_vma);
}
if (start_in_vma != 0) {
// Split VMA at the start of the allocated region
vma_handle = SplitVMA(vma_handle, start_in_vma);
}
return MakeResult<VMAIter>(vma_handle);
}
ResultVal<VMManager::VMAIter> VMManager::CarveVMARange(VAddr target, u64 size) {
ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x{:016X}", size);
ASSERT_MSG((target & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x{:016X}", target);
const VAddr target_end = target + size;
ASSERT(target_end >= target);
ASSERT(target_end <= address_space_end);
ASSERT(size > 0);
VMAIter begin_vma = StripIterConstness(FindVMA(target));
const VMAIter i_end = vma_map.lower_bound(target_end);
if (std::any_of(begin_vma, i_end,
[](const auto& entry) { return entry.second.type == VMAType::Free; })) {
return ERR_INVALID_ADDRESS_STATE;
}
if (target != begin_vma->second.base) {
begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base);
}
VMAIter end_vma = StripIterConstness(FindVMA(target_end));
if (end_vma != vma_map.end() && target_end != end_vma->second.base) {
end_vma = SplitVMA(end_vma, target_end - end_vma->second.base);
}
return MakeResult<VMAIter>(begin_vma);
}
VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) {
VirtualMemoryArea& old_vma = vma_handle->second;
VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA
// For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably
// a bug. This restriction might be removed later.
ASSERT(offset_in_vma < old_vma.size);
ASSERT(offset_in_vma > 0);
old_vma.size = offset_in_vma;
new_vma.base += offset_in_vma;
new_vma.size -= offset_in_vma;
switch (new_vma.type) {
case VMAType::Free:
break;
case VMAType::AllocatedMemoryBlock:
new_vma.offset += offset_in_vma;
break;
case VMAType::BackingMemory:
new_vma.backing_memory += offset_in_vma;
break;
case VMAType::MMIO:
new_vma.paddr += offset_in_vma;
break;
}
ASSERT(old_vma.CanBeMergedWith(new_vma));
return vma_map.emplace_hint(std::next(vma_handle), new_vma.base, new_vma);
}
VMManager::VMAIter VMManager::MergeAdjacent(VMAIter iter) {
const VMAIter next_vma = std::next(iter);
if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) {
iter->second.size += next_vma->second.size;
vma_map.erase(next_vma);
}
if (iter != vma_map.begin()) {
VMAIter prev_vma = std::prev(iter);
if (prev_vma->second.CanBeMergedWith(iter->second)) {
prev_vma->second.size += iter->second.size;
vma_map.erase(iter);
iter = prev_vma;
}
}
return iter;
}
void VMManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) {
switch (vma.type) {
case VMAType::Free:
Memory::UnmapRegion(page_table, vma.base, vma.size);
break;
case VMAType::AllocatedMemoryBlock:
Memory::MapMemoryRegion(page_table, vma.base, vma.size,
vma.backing_block->data() + vma.offset);
break;
case VMAType::BackingMemory:
Memory::MapMemoryRegion(page_table, vma.base, vma.size, vma.backing_memory);
break;
case VMAType::MMIO:
Memory::MapIoRegion(page_table, vma.base, vma.size, vma.mmio_handler);
break;
}
}
void VMManager::InitializeMemoryRegionRanges(FileSys::ProgramAddressSpaceType type) {
u64 map_region_size = 0;
u64 heap_region_size = 0;
u64 new_map_region_size = 0;
u64 tls_io_region_size = 0;
switch (type) {
case FileSys::ProgramAddressSpaceType::Is32Bit:
address_space_width = 32;
code_region_base = 0x200000;
code_region_end = code_region_base + 0x3FE00000;
map_region_size = 0x40000000;
heap_region_size = 0x40000000;
break;
case FileSys::ProgramAddressSpaceType::Is36Bit:
address_space_width = 36;
code_region_base = 0x8000000;
code_region_end = code_region_base + 0x78000000;
map_region_size = 0x180000000;
heap_region_size = 0x180000000;
break;
case FileSys::ProgramAddressSpaceType::Is32BitNoMap:
address_space_width = 32;
code_region_base = 0x200000;
code_region_end = code_region_base + 0x3FE00000;
map_region_size = 0;
heap_region_size = 0x80000000;
break;
case FileSys::ProgramAddressSpaceType::Is39Bit:
address_space_width = 39;
code_region_base = 0x8000000;
code_region_end = code_region_base + 0x80000000;
map_region_size = 0x1000000000;
heap_region_size = 0x180000000;
new_map_region_size = 0x80000000;
tls_io_region_size = 0x1000000000;
break;
default:
UNREACHABLE_MSG("Invalid address space type specified: {}", static_cast<u32>(type));
return;
}
address_space_base = 0;
address_space_end = 1ULL << address_space_width;
map_region_base = code_region_end;
map_region_end = map_region_base + map_region_size;
heap_region_base = map_region_end;
heap_region_end = heap_region_base + heap_region_size;
new_map_region_base = heap_region_end;
new_map_region_end = new_map_region_base + new_map_region_size;
tls_io_region_base = new_map_region_end;
tls_io_region_end = tls_io_region_base + tls_io_region_size;
if (new_map_region_size == 0) {
new_map_region_base = address_space_base;
new_map_region_end = address_space_end;
}
}
void VMManager::Clear() {
ClearVMAMap();
ClearPageTable();
}
void VMManager::ClearVMAMap() {
vma_map.clear();
}
void VMManager::ClearPageTable() {
std::fill(page_table.pointers.begin(), page_table.pointers.end(), nullptr);
page_table.special_regions.clear();
std::fill(page_table.attributes.begin(), page_table.attributes.end(),
Memory::PageType::Unmapped);
}
u64 VMManager::GetTotalMemoryUsage() const {
LOG_WARNING(Kernel, "(STUBBED) called");
return 0xF8000000;
}
u64 VMManager::GetTotalHeapUsage() const {
LOG_WARNING(Kernel, "(STUBBED) called");
return 0x0;
}
VAddr VMManager::GetAddressSpaceBaseAddress() const {
return address_space_base;
}
VAddr VMManager::GetAddressSpaceEndAddress() const {
return address_space_end;
}
u64 VMManager::GetAddressSpaceSize() const {
return address_space_end - address_space_base;
}
u64 VMManager::GetAddressSpaceWidth() const {
return address_space_width;
}
VAddr VMManager::GetCodeRegionBaseAddress() const {
return code_region_base;
}
VAddr VMManager::GetCodeRegionEndAddress() const {
return code_region_end;
}
u64 VMManager::GetCodeRegionSize() const {
return code_region_end - code_region_base;
}
VAddr VMManager::GetHeapRegionBaseAddress() const {
return heap_region_base;
}
VAddr VMManager::GetHeapRegionEndAddress() const {
return heap_region_end;
}
u64 VMManager::GetHeapRegionSize() const {
return heap_region_end - heap_region_base;
}
VAddr VMManager::GetMapRegionBaseAddress() const {
return map_region_base;
}
VAddr VMManager::GetMapRegionEndAddress() const {
return map_region_end;
}
u64 VMManager::GetMapRegionSize() const {
return map_region_end - map_region_base;
}
VAddr VMManager::GetNewMapRegionBaseAddress() const {
return new_map_region_base;
}
VAddr VMManager::GetNewMapRegionEndAddress() const {
return new_map_region_end;
}
u64 VMManager::GetNewMapRegionSize() const {
return new_map_region_end - new_map_region_base;
}
VAddr VMManager::GetTLSIORegionBaseAddress() const {
return tls_io_region_base;
}
VAddr VMManager::GetTLSIORegionEndAddress() const {
return tls_io_region_end;
}
u64 VMManager::GetTLSIORegionSize() const {
return tls_io_region_end - tls_io_region_base;
}
} // namespace Kernel