// Copyright 2015 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include "common/assert.h" #include "common/common_funcs.h" #include "common/logging/log.h" #include "core/core.h" #include "core/file_sys/program_metadata.h" #include "core/hle/kernel/errors.h" #include "core/hle/kernel/kernel.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/resource_limit.h" #include "core/hle/kernel/scheduler.h" #include "core/hle/kernel/thread.h" #include "core/hle/kernel/vm_manager.h" #include "core/memory.h" #include "core/settings.h" namespace Kernel { CodeSet::CodeSet() = default; CodeSet::~CodeSet() = default; SharedPtr Process::Create(KernelCore& kernel, std::string&& name) { SharedPtr process(new Process(kernel)); process->name = std::move(name); process->flags.raw = 0; process->flags.memory_region.Assign(MemoryRegion::APPLICATION); process->resource_limit = kernel.ResourceLimitForCategory(ResourceLimitCategory::APPLICATION); process->status = ProcessStatus::Created; process->program_id = 0; process->process_id = kernel.CreateNewProcessID(); process->svc_access_mask.set(); std::mt19937 rng(Settings::values.rng_seed.value_or(0)); std::uniform_int_distribution distribution; std::generate(process->random_entropy.begin(), process->random_entropy.end(), [&] { return distribution(rng); }); kernel.AppendNewProcess(process); return process; } void Process::LoadFromMetadata(const FileSys::ProgramMetadata& metadata) { program_id = metadata.GetTitleID(); is_64bit_process = metadata.Is64BitProgram(); vm_manager.Reset(metadata.GetAddressSpaceType()); } void Process::ParseKernelCaps(const u32* kernel_caps, std::size_t len) { for (std::size_t i = 0; i < len; ++i) { u32 descriptor = kernel_caps[i]; u32 type = descriptor >> 20; if (descriptor == 0xFFFFFFFF) { // Unused descriptor entry continue; } else if ((type & 0xF00) == 0xE00) { // 0x0FFF // Allowed interrupts list LOG_WARNING(Loader, "ExHeader allowed interrupts list ignored"); } else if ((type & 0xF80) == 0xF00) { // 0x07FF // Allowed syscalls mask unsigned int index = ((descriptor >> 24) & 7) * 24; u32 bits = descriptor & 0xFFFFFF; while (bits && index < svc_access_mask.size()) { svc_access_mask.set(index, bits & 1); ++index; bits >>= 1; } } else if ((type & 0xFF0) == 0xFE0) { // 0x00FF // Handle table size handle_table_size = descriptor & 0x3FF; } else if ((type & 0xFF8) == 0xFF0) { // 0x007F // Misc. flags flags.raw = descriptor & 0xFFFF; } else if ((type & 0xFFE) == 0xFF8) { // 0x001F // Mapped memory range if (i + 1 >= len || ((kernel_caps[i + 1] >> 20) & 0xFFE) != 0xFF8) { LOG_WARNING(Loader, "Incomplete exheader memory range descriptor ignored."); continue; } u32 end_desc = kernel_caps[i + 1]; ++i; // Skip over the second descriptor on the next iteration AddressMapping mapping; mapping.address = descriptor << 12; VAddr end_address = end_desc << 12; if (mapping.address < end_address) { mapping.size = end_address - mapping.address; } else { mapping.size = 0; } mapping.read_only = (descriptor & (1 << 20)) != 0; mapping.unk_flag = (end_desc & (1 << 20)) != 0; address_mappings.push_back(mapping); } else if ((type & 0xFFF) == 0xFFE) { // 0x000F // Mapped memory page AddressMapping mapping; mapping.address = descriptor << 12; mapping.size = Memory::PAGE_SIZE; mapping.read_only = false; mapping.unk_flag = false; address_mappings.push_back(mapping); } else if ((type & 0xFE0) == 0xFC0) { // 0x01FF // Kernel version kernel_version = descriptor & 0xFFFF; int minor = kernel_version & 0xFF; int major = (kernel_version >> 8) & 0xFF; LOG_INFO(Loader, "ExHeader kernel version: {}.{}", major, minor); } else { LOG_ERROR(Loader, "Unhandled kernel caps descriptor: 0x{:08X}", descriptor); } } } void Process::Run(VAddr entry_point, s32 main_thread_priority, u32 stack_size) { // Allocate and map the main thread stack // TODO(bunnei): This is heap area that should be allocated by the kernel and not mapped as part // of the user address space. vm_manager .MapMemoryBlock(vm_manager.GetTLSIORegionEndAddress() - stack_size, std::make_shared>(stack_size, 0), 0, stack_size, MemoryState::Mapped) .Unwrap(); vm_manager.LogLayout(); status = ProcessStatus::Running; Kernel::SetupMainThread(kernel, entry_point, main_thread_priority, *this); } void Process::PrepareForTermination() { status = ProcessStatus::Exited; const auto stop_threads = [this](const std::vector>& thread_list) { for (auto& thread : thread_list) { if (thread->GetOwnerProcess() != this) continue; if (thread == GetCurrentThread()) continue; // TODO(Subv): When are the other running/ready threads terminated? ASSERT_MSG(thread->GetStatus() == ThreadStatus::WaitSynchAny || thread->GetStatus() == ThreadStatus::WaitSynchAll, "Exiting processes with non-waiting threads is currently unimplemented"); thread->Stop(); } }; const auto& system = Core::System::GetInstance(); stop_threads(system.Scheduler(0).GetThreadList()); stop_threads(system.Scheduler(1).GetThreadList()); stop_threads(system.Scheduler(2).GetThreadList()); stop_threads(system.Scheduler(3).GetThreadList()); } /** * Finds a free location for the TLS section of a thread. * @param tls_slots The TLS page array of the thread's owner process. * Returns a tuple of (page, slot, alloc_needed) where: * page: The index of the first allocated TLS page that has free slots. * slot: The index of the first free slot in the indicated page. * alloc_needed: Whether there's a need to allocate a new TLS page (All pages are full). */ static std::tuple FindFreeThreadLocalSlot( const std::vector>& tls_slots) { // Iterate over all the allocated pages, and try to find one where not all slots are used. for (std::size_t page = 0; page < tls_slots.size(); ++page) { const auto& page_tls_slots = tls_slots[page]; if (!page_tls_slots.all()) { // We found a page with at least one free slot, find which slot it is for (std::size_t slot = 0; slot < page_tls_slots.size(); ++slot) { if (!page_tls_slots.test(slot)) { return std::make_tuple(page, slot, false); } } } } return std::make_tuple(0, 0, true); } VAddr Process::MarkNextAvailableTLSSlotAsUsed(Thread& thread) { auto [available_page, available_slot, needs_allocation] = FindFreeThreadLocalSlot(tls_slots); const VAddr tls_begin = vm_manager.GetTLSIORegionBaseAddress(); if (needs_allocation) { tls_slots.emplace_back(0); // The page is completely available at the start available_page = tls_slots.size() - 1; available_slot = 0; // Use the first slot in the new page // Allocate some memory from the end of the linear heap for this region. auto& tls_memory = thread.GetTLSMemory(); tls_memory->insert(tls_memory->end(), Memory::PAGE_SIZE, 0); vm_manager.RefreshMemoryBlockMappings(tls_memory.get()); vm_manager.MapMemoryBlock(tls_begin + available_page * Memory::PAGE_SIZE, tls_memory, 0, Memory::PAGE_SIZE, MemoryState::ThreadLocal); } tls_slots[available_page].set(available_slot); return tls_begin + available_page * Memory::PAGE_SIZE + available_slot * Memory::TLS_ENTRY_SIZE; } void Process::FreeTLSSlot(VAddr tls_address) { const VAddr tls_base = tls_address - vm_manager.GetTLSIORegionBaseAddress(); const VAddr tls_page = tls_base / Memory::PAGE_SIZE; const VAddr tls_slot = (tls_base % Memory::PAGE_SIZE) / Memory::TLS_ENTRY_SIZE; tls_slots[tls_page].reset(tls_slot); } void Process::LoadModule(CodeSet module_, VAddr base_addr) { const auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions, MemoryState memory_state) { const auto vma = vm_manager .MapMemoryBlock(segment.addr + base_addr, module_.memory, segment.offset, segment.size, memory_state) .Unwrap(); vm_manager.Reprotect(vma, permissions); }; // Map CodeSet segments MapSegment(module_.CodeSegment(), VMAPermission::ReadExecute, MemoryState::CodeStatic); MapSegment(module_.RODataSegment(), VMAPermission::Read, MemoryState::CodeMutable); MapSegment(module_.DataSegment(), VMAPermission::ReadWrite, MemoryState::CodeMutable); // Clear instruction cache in CPU JIT Core::System::GetInstance().ArmInterface(0).ClearInstructionCache(); Core::System::GetInstance().ArmInterface(1).ClearInstructionCache(); Core::System::GetInstance().ArmInterface(2).ClearInstructionCache(); Core::System::GetInstance().ArmInterface(3).ClearInstructionCache(); } ResultVal Process::HeapAllocate(VAddr target, u64 size, VMAPermission perms) { if (target < vm_manager.GetHeapRegionBaseAddress() || target + size > vm_manager.GetHeapRegionEndAddress() || target + size < target) { return ERR_INVALID_ADDRESS; } if (heap_memory == nullptr) { // Initialize heap heap_memory = std::make_shared>(); heap_start = heap_end = target; } else { vm_manager.UnmapRange(heap_start, heap_end - heap_start); } // If necessary, expand backing vector to cover new heap extents. if (target < heap_start) { heap_memory->insert(begin(*heap_memory), heap_start - target, 0); heap_start = target; vm_manager.RefreshMemoryBlockMappings(heap_memory.get()); } if (target + size > heap_end) { heap_memory->insert(end(*heap_memory), (target + size) - heap_end, 0); heap_end = target + size; vm_manager.RefreshMemoryBlockMappings(heap_memory.get()); } ASSERT(heap_end - heap_start == heap_memory->size()); CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, heap_memory, target - heap_start, size, MemoryState::Heap)); vm_manager.Reprotect(vma, perms); heap_used = size; return MakeResult(heap_end - size); } ResultCode Process::HeapFree(VAddr target, u32 size) { if (target < vm_manager.GetHeapRegionBaseAddress() || target + size > vm_manager.GetHeapRegionEndAddress() || target + size < target) { return ERR_INVALID_ADDRESS; } if (size == 0) { return RESULT_SUCCESS; } ResultCode result = vm_manager.UnmapRange(target, size); if (result.IsError()) return result; heap_used -= size; return RESULT_SUCCESS; } ResultCode Process::MirrorMemory(VAddr dst_addr, VAddr src_addr, u64 size) { auto vma = vm_manager.FindVMA(src_addr); ASSERT_MSG(vma != vm_manager.vma_map.end(), "Invalid memory address"); ASSERT_MSG(vma->second.backing_block, "Backing block doesn't exist for address"); // The returned VMA might be a bigger one encompassing the desired address. auto vma_offset = src_addr - vma->first; ASSERT_MSG(vma_offset + size <= vma->second.size, "Shared memory exceeds bounds of mapped block"); const std::shared_ptr>& backing_block = vma->second.backing_block; std::size_t backing_block_offset = vma->second.offset + vma_offset; CASCADE_RESULT(auto new_vma, vm_manager.MapMemoryBlock(dst_addr, backing_block, backing_block_offset, size, MemoryState::Mapped)); // Protect mirror with permissions from old region vm_manager.Reprotect(new_vma, vma->second.permissions); // Remove permissions from old region vm_manager.Reprotect(vma, VMAPermission::None); return RESULT_SUCCESS; } ResultCode Process::UnmapMemory(VAddr dst_addr, VAddr /*src_addr*/, u64 size) { return vm_manager.UnmapRange(dst_addr, size); } Kernel::Process::Process(KernelCore& kernel) : Object{kernel} {} Kernel::Process::~Process() {} } // namespace Kernel