These functions are not stubbed and are called fairly often. Due to the nature of how often they're called, we should keep them marked as LOG_TRACE instead of LOG_DEBUG or LOG_WARNING
Avoids the use of global accessors, removing the reliance on global
state. This also makes dependencies explicit in the interface, as
opposed to being hidden
Volume is a f32 value. (SwIPC describes it as a u32, but it is actually f32 as corroborated by switchbrew docs and SetAudioDeviceOutputVolume)
```cpp
const f32 volume = rp.Pop<f32>();
```
This commit ensures that all backing memory allocated for the Guest CPU
is aligned to 256 bytes. This due to how gpu memory works and the heavy
constraints it has in the alignment of physical memory.
Audio devices use the supplied revision information in order to
determine if USB audio output is able to be supported. In this case, we
can only really handle using this revision information in
ListAudioDeviceName(), where it checks if USB audio output is supported
before supplying it as a device name.
A few other scenarios exist where the revision info is checked, such as:
- Early exiting from SetAudioDeviceOutputVolume if USB audio is
attempted to be set when that device is unsupported.
- Early exiting and returning 0.0f in GetAudioDeviceOutputVolume when
USB output volume is queried and it's an unsupported device.
- Falling back to AHUB headphones in GetActiveAudioDeviceName when the
device type is USB output, but is unsupported based off the revision
info.
In order for these changes to also be implemented, a few other changes
to the interface need to be made.
Given we now properly handle everything about ListAudioDeviceName(), we
no longer need to describe it as a stubbed function.
The revision querying facilities are used by more than just audren. e.g.
audio devices can use this to test whether or not USB audio output is
supported.
This will be used within the following change.
AudioDevice and AudioInterface aren't valid device names on the Switch.
We should also be returning consistent names in
GetActiveAudioDeviceName().
While we're at it, we can also handle proper name output in
ListAudioDeviceName, by returning all the available devices on the
Switch.
Creating multiple "AudioRenderer" threads cause the previous thread to be overwritten. The thread will name be renamed to AudioRenderer-InstanceX, where X is the current instance number.
Provides a basic implementation of SetAutoSleepDisabled. Until idle
handling is implemented, this is about the best we can do.
In the meantime, provide a rough documenting of specifics that occur
when this function is called on actual hardware.
Prior to PR, Yuzu did not restore memory to RW-
on unmap of mirrored memory or unloading of NRO.
(In fact, in the NRO case, the memory was unmapped
instead of reprotected to --- on Load, so it was
actually lost entirely...)
This PR addresses that, and restores memory to RW-
as it should.
This fixes a crash in Super Smash Bros when creating
a World of Light save for the first time, and possibly
other games/circumstances.
We don't have any friends implemented in Yuzu yet so it doesn't make sense to return any friends. For now we'll be returning 0 friends however the information provided will allow a proper implementation of this cmd when needed.
The event should only be signaled when an output audio device gets changed. Example, Speaker to USB headset. We don't identify different devices internally yet so there's no need to signal the event yet.
StartLrAssignmentMode and StopLrAssignmentMode don't require any implementation as it's just used for showing the screen of changing the controller orientation if the user wishes to do so. Ever since #1634 this has not been needed as users can specify the controller orientation from the config and swap at any time. We store a private member just in case this gets used for anything extra in the future
InitializeApplicationInfoRestricted will need further implementation as it's checking for other user requirements about the game. As we're emulating, we're assuming the user owns the game so we skip these checks currently, implementation will need to be added further on
This PR attempts to implement the shared memory provided by GetSharedMemoryNativeHandle. There is still more work to be done however that requires a rehaul of the current time module to handle clock contexts. This PR is mainly to get the basic functionality of the SharedMemory working and allow the use of addition to it whilst things get improved on.
Things to note:
Memory Barriers are used in the SharedMemory and a better solution would need to be done to implement this. Currently in this PR I’m faking the memory barriers as everything is sync and single threaded. They work by incrementing the counter and just populate the two data slots. On data reading, it will read the last added data.
Specific values in the shared memory would need to be updated periodically. This isn't included in this PR since we don't actively do this yet. In a later PR when time is refactored this should be done.
Finally, as we don't handle clock contexts. When time is refactored, we will need to update the shared memory for specific contexts. This PR does this already however since the contexts are all identical and not separated. We're just updating the same values for each context which in this case is empty.
Tiime:SetStandardUserSystemClockAutomaticCorrectionEnabled, Time:IsStandardUserSystemClockAutomaticCorrectionEnabled are also partially implemented in this PR. The reason the implementation is partial is because once again, a lack of clock contexts. This will be improved on in a future PR.
This PR closes issue #2556
Even though it has been proven that IAudioRenderer:SystemEvent is
actually an automatic event. The current implementation of such event is
all thought to be manual. Thus it's implementation needs to be corrected
when doing such change. As it is right now this PR introduced a series
of regressions on softlocks on multiple games. Therefore, this pr
reverts such change until a correct implementation is made.
IPC-100 was changed to InitializeApplicationInfoOld instead of InitializeApplicationInfo. IPC-150 makes an indentical call to IPC-100 however does extra processing. They should not have the same name as it's quite confusing to debug.
These can be generified together by using a concept type to designate
them. This also has the benefit of not making copies of potentially very
large arrays.
Previously, the code was accumulating data into a std::vector and then
tossing all of it away if a setting was disabled.
Instead, we can just check if it's disabled and do no work at all if
possible. If it's enabled, then we can append to the vector and
allocate.
Unlikely to impact usage much, but it is slightly less sloppy with
resources.
A few of the aoc service stubs/implementations weren't fully popping all
of the parameters passed to them. This ensures that all parameters are
popped and, at minimum, logged out.
Renames the members to more accurately indicate what they signify.
"OneShot" and "Sticky" are kind of ambiguous identifiers for the reset
types, and can be kind of misleading. Automatic and Manual communicate
the kind of reset type in a clearer manner. Either the event is
automatically reset, or it isn't and must be manually cleared.
The "OneShot" and "Sticky" terminology is just a hold-over from Citra
where the kernel had a third type of event reset type known as "Pulse".
Given the Switch kernel only has two forms of event reset types, we
don't need to keep the old terminology around anymore.
This reduces the boilerplate that services have to write out the current thread explicitly. Using current thread instead of client thread is also semantically incorrect, and will be a problem when we implement multicore (at which time there will be multiple current threads)
This corrects cases where it was possible to write more entries into the
write buffer than were requested. Now, we check the size of the buffer
before actually writing into them.
We were also returning the wrong value for
GetAvailableLanguageCodeCount2(). This was previously returning 64, but
only 17 should have been returned. 64 entries is the size of the static
array used in MakeLanguageCode() within the service binary itself, but
isn't the actual total number of language codes present.
Also introduced in REV5 was a variable-size audio command buffer. This
also affects how the size of the work buffer should be determined, so we
can add handling for this as well.
Thankfully, no other alterations were made to how the work buffer size
is calculated in 7.0.0-8.0.0. There were indeed changes made to to how
some of the actual audio commands are generated though (particularly in
REV7), however they don't apply here.
Introduced in REV5. This is trivial to add support for, now that
everything isn't a mess of random magic constant values.
All this is, is a change in data type sizes as far as this function
cares.
"Unmagics" quite a few magic constants within this code, making it much
easier to understand. Particularly given this factors out specific
sections into their own self-contained lambda functions.
Provides serialization/deserialization to the database in system save files, accessors for database state and proper handling of both major Mii formats (MiiInfo and MiiStoreData)