The event should only be signaled when an output audio device gets changed. Example, Speaker to USB headset. We don't identify different devices internally yet so there's no need to signal the event yet.
DeltaFragments are only used to download and apply partial patches on a real console, and are not useful to us at all. Most patch NSPs do not include them, and when they do, it's a waste of space to install them.
StartLrAssignmentMode and StopLrAssignmentMode don't require any implementation as it's just used for showing the screen of changing the controller orientation if the user wishes to do so. Ever since #1634 this has not been needed as users can specify the controller orientation from the config and swap at any time. We store a private member just in case this gets used for anything extra in the future
InitializeApplicationInfoRestricted will need further implementation as it's checking for other user requirements about the game. As we're emulating, we're assuming the user owns the game so we skip these checks currently, implementation will need to be added further on
This PR attempts to implement the shared memory provided by GetSharedMemoryNativeHandle. There is still more work to be done however that requires a rehaul of the current time module to handle clock contexts. This PR is mainly to get the basic functionality of the SharedMemory working and allow the use of addition to it whilst things get improved on.
Things to note:
Memory Barriers are used in the SharedMemory and a better solution would need to be done to implement this. Currently in this PR I’m faking the memory barriers as everything is sync and single threaded. They work by incrementing the counter and just populate the two data slots. On data reading, it will read the last added data.
Specific values in the shared memory would need to be updated periodically. This isn't included in this PR since we don't actively do this yet. In a later PR when time is refactored this should be done.
Finally, as we don't handle clock contexts. When time is refactored, we will need to update the shared memory for specific contexts. This PR does this already however since the contexts are all identical and not separated. We're just updating the same values for each context which in this case is empty.
Tiime:SetStandardUserSystemClockAutomaticCorrectionEnabled, Time:IsStandardUserSystemClockAutomaticCorrectionEnabled are also partially implemented in this PR. The reason the implementation is partial is because once again, a lack of clock contexts. This will be improved on in a future PR.
This PR closes issue #2556
This is more representative of what actually occurs, as web does support remote URLs which wouldn't need a romfs callback. This paves for easy future support of this with a call like 'OpenPageRemote' or similar.
Even though it has been proven that IAudioRenderer:SystemEvent is
actually an automatic event. The current implementation of such event is
all thought to be manual. Thus it's implementation needs to be corrected
when doing such change. As it is right now this PR introduced a series
of regressions on softlocks on multiple games. Therefore, this pr
reverts such change until a correct implementation is made.
These source files have been unused for the entire lifecycle of the
project. They're a hold-over from Citra and only add to the build time
of the project, so they can be removed.
There's also likely no way this would ever work in yuzu in its current
form without revamping quite a bit of it, given how different the GPU on
the Switch is compared to the 3DS.
The old implementation had faulty Threadsafe methods where events could
be missing. This implementation unifies unsafe/safe methods and makes
core timing thread safe overall.
IPC-100 was changed to InitializeApplicationInfoOld instead of InitializeApplicationInfo. IPC-150 makes an indentical call to IPC-100 however does extra processing. They should not have the same name as it's quite confusing to debug.
These can be generified together by using a concept type to designate
them. This also has the benefit of not making copies of potentially very
large arrays.
This is performing more work than would otherwise be necessary during
VMManager's destruction. All we actually want to occur in this scenario
is for any allocated memory to be freed, which will happen automatically
as the VMManager instance goes out of scope.
Anything else being done is simply unnecessary work.
Given we don't currently implement the personal heap yet, the existing
memory querying functions are essentially doing what the memory querying
types introduced in 6.0.0 do.
So, we can build the necessary machinery over the top of those and just
use them as part of info types.
Treating it as a u16 can result in a sign-conversion warning when
performing arithmetic with it, as u16 promotes to an int when aritmetic
is performed on it, not unsigned int.
This also makes the interface more uniform, as the layout interface now
operates on u32 across the board.
Makes the dependency explicit in the TelemetrySession's interface
instead of making it a hidden dependency.
This also revealed a hidden issue with the way the telemetry session was
being initialized. It was attempting to retrieve the app loader and log
out title-specific information. However, this isn't always guaranteed to
be possible.
During the initialization phase, everything is being constructed. It
doesn't mean an actual title has been selected. This is what the Load()
function is for. This potentially results in dead code paths involving
the app loader. Instead, we explicitly add this information when we know
the app loader instance is available.
Previously, the code was accumulating data into a std::vector and then
tossing all of it away if a setting was disabled.
Instead, we can just check if it's disabled and do no work at all if
possible. If it's enabled, then we can append to the vector and
allocate.
Unlikely to impact usage much, but it is slightly less sloppy with
resources.
A few of the aoc service stubs/implementations weren't fully popping all
of the parameters passed to them. This ensures that all parameters are
popped and, at minimum, logged out.
These are only used from within this translation unit, so they don't
need to have external linkage. They were intended to be marked with this
anyways to be consistent with the other service functions.
Renames the members to more accurately indicate what they signify.
"OneShot" and "Sticky" are kind of ambiguous identifiers for the reset
types, and can be kind of misleading. Automatic and Manual communicate
the kind of reset type in a clearer manner. Either the event is
automatically reset, or it isn't and must be manually cleared.
The "OneShot" and "Sticky" terminology is just a hold-over from Citra
where the kernel had a third type of event reset type known as "Pulse".
Given the Switch kernel only has two forms of event reset types, we
don't need to keep the old terminology around anymore.
This reduces the boilerplate that services have to write out the current thread explicitly. Using current thread instead of client thread is also semantically incorrect, and will be a problem when we implement multicore (at which time there will be multiple current threads)
This corrects cases where it was possible to write more entries into the
write buffer than were requested. Now, we check the size of the buffer
before actually writing into them.
We were also returning the wrong value for
GetAvailableLanguageCodeCount2(). This was previously returning 64, but
only 17 should have been returned. 64 entries is the size of the static
array used in MakeLanguageCode() within the service binary itself, but
isn't the actual total number of language codes present.
The backend is not used until we decide to submit the testcase/telemetry, and creating it early prevents users from updating the credentials properly while the games are running.
Also introduced in REV5 was a variable-size audio command buffer. This
also affects how the size of the work buffer should be determined, so we
can add handling for this as well.
Thankfully, no other alterations were made to how the work buffer size
is calculated in 7.0.0-8.0.0. There were indeed changes made to to how
some of the actual audio commands are generated though (particularly in
REV7), however they don't apply here.
Introduced in REV5. This is trivial to add support for, now that
everything isn't a mess of random magic constant values.
All this is, is a change in data type sizes as far as this function
cares.
"Unmagics" quite a few magic constants within this code, making it much
easier to understand. Particularly given this factors out specific
sections into their own self-contained lambda functions.
These are actually quite important indicators of thread lifetimes, so
they should be going into the debug log, rather than being treated as
misc info and delegated to the trace log.
Makes the code much nicer to follow in terms of behavior and control
flow. It also fixes a few bugs in the implementation.
Notably, the thread's owner process shouldn't be accessed in order to
retrieve the core mask or ideal core. This should be done through the
current running process. The only reason this bug wasn't encountered yet
is because we currently only support running one process, and thus every
owner process will be the current process.
We also weren't checking against the process' CPU core mask to see if an
allowed core is specified or not.
With this out of the way, it'll be less noisy to implement proper
handling of the affinity flags internally within the kernel thread
instances.
Provides serialization/deserialization to the database in system save files, accessors for database state and proper handling of both major Mii formats (MiiInfo and MiiStoreData)
This option allows picking the compatibility profile since a lot of bugs
are fixed in it. We devs will use this option to easierly debug current
problems in our Core implementation.:wq