The AddressArbiter type isn't actually used, given the arbiter itself
isn't a direct kernel object (or object that implements the wait object
facilities).
Given this, we can remove the enum entry entirely.
Within the kernel, shared memory and transfer memory facilities exist as
completely different kernel objects. They also have different validity
checking as well. Therefore, we shouldn't be treating the two as the
same kind of memory.
They also differ in terms of their behavioral aspect as well. Shared
memory is intended for sharing memory between processes, while transfer
memory is intended to be for transferring memory to other processes.
This breaks out the handling for transfer memory into its own class and
treats it as its own kernel object. This is also important when we
consider resource limits as well. Particularly because transfer memory
is limited by the resource limit value set for it.
While we currently don't handle resource limit testing against objects
yet (but we do allow setting them), this will make implementing that
behavior much easier in the future, as we don't need to distinguish
between shared memory and transfer memory allocations in the same place.
A holdover from citra, the Horizon kernel on the switch has no
prominent kernel object that functions as a timer. At least not
to the degree of sophistication that this class provided.
As such, this can be removed entirely. This class also wasn't used at
all in any meaningful way within the core, so this was just code sitting
around doing nothing. This also allows removing a few things from the
main KernelCore class that allows it to use slightly less resources
overall (though very minor and not anything really noticeable).
Two kernel object should absolutely never have the same handle ID type.
This can cause incorrect behavior when it comes to retrieving object
types from the handle table. In this case it allows converting a
WritableEvent into a ReadableEvent and vice-versa, which is undefined
behavior, since the object types are not the same.
This also corrects ClearEvent() to check both kernel types like the
kernel itself does.
These only exist to ferry data into a Process instance and end up going
out of scope quite early. Because of this, we can just make it a plain
struct for holding things and just std::move it into the relevant
function. There's no need to make this inherit from the kernel's Object
type.
boost::static_pointer_cast for boost::intrusive_ptr (what SharedPtr is),
takes its parameter by const reference. Given that, it means that this
std::move doesn't actually do anything other than obscure what the
function's actual behavior is, so we can remove this. To clarify, this
would only do something if the parameter was either taking its argument
by value, by non-const ref, or by rvalue-reference.
As means to pave the way for getting rid of global state within core,
This eliminates kernel global state by removing all globals. Instead
this introduces a KernelCore class which acts as a kernel instance. This
instance lives in the System class, which keeps its lifetime contained
to the lifetime of the System class.
This also forces the kernel types to actually interact with the main
kernel instance itself instead of having transient kernel state placed
all over several translation units, keeping everything together. It also
has a nice consequence of making dependencies much more explicit.
This also makes our initialization a tad bit more correct. Previously we
were creating a kernel process before the actual kernel was initialized,
which doesn't really make much sense.
The KernelCore class itself follows the PImpl idiom, which allows
keeping all the implementation details sealed away from everything else,
which forces the use of the exposed API and allows us to avoid any
unnecessary inclusions within the main kernel header.
Despite being covered by a global mutex, we should still ensure that the
class handles its reference counts properly. This avoids potential
shenanigans when it comes to data races.
Given this is the root object that drives quite a bit of the kernel
object hierarchy, ensuring we always have the correct behavior (and no
races) is a good thing.
General moving to keep kernel object types separate from the direct
kernel code. Also essentially a preliminary cleanup before eliminating
global kernel state in the kernel code.