While DEPBAR is stubbed it doesn't change anything from our end. Shading
languages handle what this instruction does implicitly. We are not
getting anything out fo this log except noise.
Update src/video_core/shader/control_flow.cpp
Co-Authored-By: Mat M. <mathew1800@gmail.com>
Update src/video_core/shader/control_flow.cpp
Co-Authored-By: Mat M. <mathew1800@gmail.com>
Update src/video_core/shader/control_flow.cpp
Co-Authored-By: Mat M. <mathew1800@gmail.com>
Update src/video_core/shader/control_flow.cpp
Co-Authored-By: Mat M. <mathew1800@gmail.com>
Update src/video_core/shader/control_flow.cpp
Co-Authored-By: Mat M. <mathew1800@gmail.com>
Update src/video_core/shader/control_flow.cpp
Co-Authored-By: Mat M. <mathew1800@gmail.com>
Originally on the last commit I thought TLD4 acted the same as TLD4S and
didn't have a mask. It actually does have a component mask. This commit
corrects that.
This commit fixes an issue where not all 4 results of tld4 were being
written, the color component was defaulted to red, among other things.
It also implements the bindless variant.
Bindless textures were using u64 to pack the buffer and offset from
where they come from. Drop this in favor of separated entries in the
struct.
Remove the usage of std::set in favor of std::list (it's not std::vector
to avoid reference invalidations) for samplers and images.
Given the overall size of the maps are very small, we can use arrays of
pairs here instead of always heap allocating a new map every time the
functions are called. Given the small size of the maps, the difference
in container lookups are negligible, especially given the entries are
already sorted.
TLD4S always outputs 4 values, the previous code checked a component
mask and omitted those values that weren't part of it. This commit
corrects that and makes sure all 4 values are set.
Ignore global memory operations instead of invoking undefined behaviour
when constant buffer tracking fails and we are blasting through asserts,
ignore the operation.
In the case of LDG this means filling the destination registers with
zeroes; for STG this means ignore the instruction as a whole.
The default behaviour is still to abort execution on failure.
The returned string is simply a substring of our constexpr tabs
string_view, so we can just use a string_view here as well, since the
original string_view is guaranteed to always exist.
Now the function is fully non-allocating.
This can be trivially fixed by making the input size a size_t.
CFGRebuildState's constructor parameter is already a std::size_t, so
this just makes the size type fully conform with it.