Given this is utilized by the loaders, this allows avoiding inclusion of
the kernel process definitions where avoidable.
This also keeps the loading format for all executable data separate from
the kernel objects.
Neither the NRO or NSO loaders actually make use of the functions or
members provided by the Linker interface, so we can just remove the
inheritance altogether.
No implementations actually modify instance state (and it would be
questionable to do that in the first place given the name), so we can
make this a const member function.
Load() is already given the process instance as a parameter, so instead
of coupling the class to the System class, we can just forward that
parameter to LoadNro()
* get rid of boost::optional
* Remove optional references
* Use std::reference_wrapper for optional references
* Fix clang format
* Fix clang format part 2
* Adressed feedback
* Fix clang format and MacOS build
When enabled in settings, PatchNSO will dump the unmodified NSO that it was passed to a file named <build id>.nso in the dump root for the current title ID.
The only reason the getter existed was to check whether or not the
program NCA was null. Instead, we can just provide a function to query
for the existence of it, instead of exposing it entirely.
This function doesn't need to care about ownership semantics, so we can
just pass it a reference to the file itself, rather than a
std::shared_ptr alias.
These only exist to ferry data into a Process instance and end up going
out of scope quite early. Because of this, we can just make it a plain
struct for holding things and just std::move it into the relevant
function. There's no need to make this inherit from the kernel's Object
type.
Neither of these functions require the use of shared ownership of the
returned pointer. This makes it more difficult to create reference
cycles with, and makes the interface more generic, as std::shared_ptr
instances can be created from a std::unique_ptr, but the vice-versa
isn't possible. This also alters relevant functions to take NCA
arguments by const reference rather than a const reference to a
std::shared_ptr. These functions don't alter the ownership of the memory
used by the NCA instance, so we can make the interface more generic by
not assuming anything about the type of smart pointer the NCA is
contained within and make it the caller's responsibility to ensure the
supplied NCA is valid.
Makes the public interface consistent in terms of how accesses are done
on a process object. It also makes it slightly nicer to reason about the
logic of the process class, as we don't want to expose everything to
external code.
A process should never require being reference counted in this
situation. If the handle to a process is freed before this function is
called, it's definitely a bug with our lifetime management, so we can
put the requirement in place for the API that the process must be a
valid instance.
The locations of these can actually vary depending on the address space
layout, so we shouldn't be using these when determining where to map
memory or be using them as offsets for calculations. This keeps all the
memory ranges flexible and malleable based off of the virtual memory
manager instance state.
Rather than hard-code the address range to be 36-bit, we can derive the
parameters from supplied NPDM metadata if the supplied exectuable
supports it. This is the bare minimum necessary for this to be possible.
The following commits will rework the memory code further to adjust to
this.
An instance of the NAX apploader already has an existing NAX instance in
memory. Calling directly into IdentifyType() directly would re-parse the
whole file again into yet another NAX instance, only to toss it away
again.
This gets rid of unnecessary/redundant file parsing and allocations.
AsNCA() allocates an NCA instance every time it's called. In the current
manner it's used, it's quite inefficient as it's making a redundant
allocation.
We can just amend the order of the conditionals to make it easier to
just call it once.