The job of this abstraction is to provide staging buffers for temporary
operations. Think of image uploads or buffer uploads to device memory.
It automatically deletes unused buffers.
The intention behind this hasheable structure is to describe the state
of fixed function pipeline state that gets compiled to a single graphics
pipeline state object. This is all dynamic state in OpenGL but Vulkan
wants it in an immutable state, even if hardware can edit it freely.
In this commit the structure is defined in an optimized state (it uses
booleans, has paddings and many data entries that can be packed to
single integers). This is intentional as an initial implementation that
is easier to debug, implement and review. It will be optimized in later
stages, or it might change if Vulkan gets more dynamic states.
ExprCondCode visit implements the generic Visit. Use this instead of
that one.
As an intended side effect this fixes unwritten memory usages in cases
when a negation of a condition code is used.
This allows us to put VKFenceWatch inside a std::vector without storing
it in heap. On move we have to signal the fences where the new protected
resource is, adding some overhead.
VK_NV_device_diagnostic_checkpoints allows us to push data to a Vulkan
queue and then query it even after a device loss. This allows us to push
the current pipeline object and see what was the call that killed the
device.
Some games write from fragment shaders to an unexistant framebuffer
attachment or they don't write to one when it exists in the framebuffer.
Fix this by skipping writes or adding zeroes.
These shaders are used to specify code that is not dynamically generated
in the Vulkan backend. Instead of packing it inside the build system,
it's manually built and copied to the C++ file to avoid adding
unnecessary build time dependencies.
quad_array should be dropped in the future since it can be emulated with
a memory pool generated from the CPU.
Add an extra argument to query device capabilities in the future. The
intention behind this is to use native quads, quad strips, line loops
and polygons if these are released for Vulkan.
The OpenGL spec defines GL_CLAMP's formula similarly to CLAMP_TO_EDGE
and CLAMP_TO_BORDER depending on the filter mode used. It doesn't
exactly behave like this, but it's the closest we can get with what
Vulkan offers without emulating it by injecting shader code.
Introduce a worker thread approach for delegating Vulkan work derived
from dxvk's approach. https://github.com/doitsujin/dxvk
Now that the scheduler is what handles all Vulkan work related to
command streaming, store state tracking in itself. This way we can know
when to reupload Vulkan dynamic state to the queue (since this one is
invalidated between command buffers unlike NVN). We can also store the
renderpass state and graphics pipeline bound to avoid redundant binds
and renderpass begins/ends.
Update Sirit and its usage in vk_shader_decompiler. Highlights:
- Implement tessellation shaders
- Implement geometry shaders
- Implement some missing features
- Use native half float instructions when available.
- Setup more features and requirements.
- Improve logging for missing features.
- Collect telemetry parameters.
- Add queries for more image formats.
- Query push constants limits.
- Optionally enable some extensions.
Amends a few interfaces to be able to handle the migration over to the
new Memory class by passing the class by reference as a function
parameter where necessary.
Notably, within the filesystem services, this eliminates two ReadBlock()
calls by using the helper functions of HLERequestContext to do that for
us.
Abstracted ComponentType was not being used in a meaningful way.
This commit drops its usage.
There is one place where it was being used to test compatibility between
two cached surfaces, but this one is implied in the pixel format.
Removing the component type test doesn't change the behaviour.