The owning process of a thread is required to exist before the thread,
so we can enforce this API-wise by using a reference. We can also avoid
the reliance on the system instance by using that parameter to access
the page table that needs to be set.
This can just be a regular function, getting rid of the need to also
explicitly undef the define at the end of the file. Given FuncReturn()
was already converted into a function, it's #undef can also be removed.
This modifies the CPU interface to more accurately match an
AArch64-supporting CPU as opposed to an ARM11 one. Two of the methods
don't even make sense to keep around for this interface, as Adv Simd is
used, rather than the VFP in the primary execution state. This is
essentially a modernization change that should have occurred from the
get-go.
The kernel does the equivalent of the following check before proceeding:
if (address + 0x8000000000 < 0x7FFFE00000) {
return ERR_INVALID_MEMORY_STATE;
}
which is essentially what our IsKernelVirtualAddress() function does. So
we should also be checking for this.
The kernel also checks if the given input addresses are 4-byte aligned,
however our Mutex::TryAcquire() and Mutex::Release() functions already
handle this, so we don't need to add code for this case.
The kernel caps the size limit of shared memory to 8589930496 bytes (or
(1GB - 512 bytes) * 8), so approximately 8GB, where every GB has a 512
byte sector taken off of it.
It also ensures the shared memory is created with either read or
read/write permissions for both permission types passed in, allowing the
remote permissions to also be set as "don't care".
Part of the checking done by the kernel is to check if the given
address and size are 4KB aligned, as well as checking if the size isn't
zero. It also only allows mapping shared memory as readable or
read/write, but nothing else, and so we shouldn't allow mapping as
anything else either.
Previously, these were sitting outside of the Kernel namespace, which
doesn't really make sense, given they're related to the Thread class
which is within the Kernel namespace.
While unlikely, it does avoid constructing a std::string and
unnecessarily calling into the memory code if a game or executable
decides to be really silly about their logging.
Given we now have the kernel as a class, it doesn't make sense to keep
the current process pointer within the System class, as processes are
related to the kernel.
This also gets rid of a subtle case where memory wouldn't be freed on
core shutdown, as the current_process pointer would never be reset,
causing the pointed to contents to continue to live.
Now that we have a class representing the kernel in some capacity, we
now have a place to put the named port map, so we move it over and get
rid of another piece of global state within the core.
The follow-up to e2457418da, which
replaces most of the includes in the core header with forward declarations.
This makes it so that if any of the headers the core header was
previously including change, then no one will need to rebuild the bulk
of the core, due to core.h being quite a prevalent inclusion.
This should make turnaround for changes much faster for developers.
As means to pave the way for getting rid of global state within core,
This eliminates kernel global state by removing all globals. Instead
this introduces a KernelCore class which acts as a kernel instance. This
instance lives in the System class, which keeps its lifetime contained
to the lifetime of the System class.
This also forces the kernel types to actually interact with the main
kernel instance itself instead of having transient kernel state placed
all over several translation units, keeping everything together. It also
has a nice consequence of making dependencies much more explicit.
This also makes our initialization a tad bit more correct. Previously we
were creating a kernel process before the actual kernel was initialized,
which doesn't really make much sense.
The KernelCore class itself follows the PImpl idiom, which allows
keeping all the implementation details sealed away from everything else,
which forces the use of the exposed API and allows us to avoid any
unnecessary inclusions within the main kernel header.
We can make this error code an alias of the resource limit exceeded
error code, allowing us to get rid of the lingering 3DS error code of
the same type.
We already have the variable itself set up to perform this task, so we
can just return its value from the currently executing process instead
of always stubbing it to zero.
Allows querying the inverse of IsDomain() to make things more readable.
This will likely also be usable in the event of implementing
ConvertDomainToSession().
Despite being covered by a global mutex, we should still ensure that the
class handles its reference counts properly. This avoids potential
shenanigans when it comes to data races.
Given this is the root object that drives quite a bit of the kernel
object hierarchy, ensuring we always have the correct behavior (and no
races) is a good thing.
The current core may have nothing to do with the core where the new thread was scheduled to run. In case it's the same core, then the following PrepareReshedule call will take care of that.
WakeAfterDelay might be called from any host thread, so err on the side of caution and use the thread-safe CoreTiming::ScheduleEventThreadsafe.
Note that CoreTiming is still far from thread-safe, there may be more things we have to work on for it to be up to par with what we want.
Exit from AddMutexWaiter early if the thread is already waiting for a mutex owned by the owner thread.
This accounts for the possibility of a thread that is waiting on a condition variable being awakened twice in a row.
Also added more validation asserts.
This should fix one of the random crashes in Breath Of The Wild.