memory_manager: Bug fixes and further cleanup.

This commit is contained in:
bunnei 2019-03-20 22:28:35 -04:00
parent 3ae0de9b53
commit 72837e4b3d
2 changed files with 72 additions and 73 deletions

View file

@ -40,7 +40,7 @@ GPUVAddr MemoryManager::AllocateSpace(GPUVAddr gpu_addr, u64 size, u64 align) {
return gpu_addr; return gpu_addr;
} }
GPUVAddr MemoryManager::MapBufferEx(GPUVAddr cpu_addr, u64 size) { GPUVAddr MemoryManager::MapBufferEx(VAddr cpu_addr, u64 size) {
const GPUVAddr gpu_addr{ const GPUVAddr gpu_addr{
FindFreeRegion(address_space_base, size, page_size, VirtualMemoryArea::Type::Unmapped)}; FindFreeRegion(address_space_base, size, page_size, VirtualMemoryArea::Type::Unmapped)};
MapBackingMemory(gpu_addr, Memory::GetPointer(cpu_addr), ((size + page_mask) & ~page_mask), MapBackingMemory(gpu_addr, Memory::GetPointer(cpu_addr), ((size + page_mask) & ~page_mask),
@ -48,7 +48,7 @@ GPUVAddr MemoryManager::MapBufferEx(GPUVAddr cpu_addr, u64 size) {
return gpu_addr; return gpu_addr;
} }
GPUVAddr MemoryManager::MapBufferEx(GPUVAddr cpu_addr, GPUVAddr gpu_addr, u64 size) { GPUVAddr MemoryManager::MapBufferEx(VAddr cpu_addr, GPUVAddr gpu_addr, u64 size) {
ASSERT((gpu_addr & page_mask) == 0); ASSERT((gpu_addr & page_mask) == 0);
MapBackingMemory(gpu_addr, Memory::GetPointer(cpu_addr), ((size + page_mask) & ~page_mask), MapBackingMemory(gpu_addr, Memory::GetPointer(cpu_addr), ((size + page_mask) & ~page_mask),
@ -74,20 +74,20 @@ GPUVAddr MemoryManager::FindFreeRegion(GPUVAddr region_start, u64 size, u64 alig
align = (align + page_mask) & ~page_mask; align = (align + page_mask) & ~page_mask;
// Find the first Free VMA. // Find the first Free VMA.
const GPUVAddr base = region_start; const VMAHandle vma_handle{std::find_if(vma_map.begin(), vma_map.end(), [&](const auto& vma) {
const VMAHandle vma_handle = std::find_if(vma_map.begin(), vma_map.end(), [&](const auto& vma) { if (vma.second.type != vma_type) {
if (vma.second.type != vma_type)
return false; return false;
}
const VAddr vma_end = vma.second.base + vma.second.size; const VAddr vma_end{vma.second.base + vma.second.size};
return vma_end > base && vma_end >= base + size; return vma_end > region_start && vma_end >= region_start + size;
}); })};
if (vma_handle == vma_map.end()) { if (vma_handle == vma_map.end()) {
return {}; return {};
} }
return std::max(base, vma_handle->second.base); return std::max(region_start, vma_handle->second.base);
} }
bool MemoryManager::IsAddressValid(GPUVAddr addr) const { bool MemoryManager::IsAddressValid(GPUVAddr addr) const {
@ -99,7 +99,7 @@ std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr addr) {
return {}; return {};
} }
VAddr cpu_addr = page_table.backing_addr[addr >> page_bits]; VAddr cpu_addr{page_table.backing_addr[addr >> page_bits]};
if (cpu_addr) { if (cpu_addr) {
return cpu_addr + (addr & page_mask); return cpu_addr + (addr & page_mask);
} }
@ -113,7 +113,7 @@ T MemoryManager::Read(GPUVAddr addr) {
return {}; return {};
} }
const u8* page_pointer = page_table.pointers[addr >> page_bits]; const u8* page_pointer{page_table.pointers[addr >> page_bits]};
if (page_pointer) { if (page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block // NOTE: Avoid adding any extra logic to this fast-path block
T value; T value;
@ -121,8 +121,7 @@ T MemoryManager::Read(GPUVAddr addr) {
return value; return value;
} }
Common::PageType type = page_table.attributes[addr >> page_bits]; switch (page_table.attributes[addr >> page_bits]) {
switch (type) {
case Common::PageType::Unmapped: case Common::PageType::Unmapped:
LOG_ERROR(HW_GPU, "Unmapped Read{} @ 0x{:08X}", sizeof(T) * 8, addr); LOG_ERROR(HW_GPU, "Unmapped Read{} @ 0x{:08X}", sizeof(T) * 8, addr);
return 0; return 0;
@ -141,15 +140,14 @@ void MemoryManager::Write(GPUVAddr addr, T data) {
return; return;
} }
u8* page_pointer = page_table.pointers[addr >> page_bits]; u8* page_pointer{page_table.pointers[addr >> page_bits]};
if (page_pointer) { if (page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block // NOTE: Avoid adding any extra logic to this fast-path block
std::memcpy(&page_pointer[addr & page_mask], &data, sizeof(T)); std::memcpy(&page_pointer[addr & page_mask], &data, sizeof(T));
return; return;
} }
Common::PageType type = page_table.attributes[addr >> page_bits]; switch (page_table.attributes[addr >> page_bits]) {
switch (type) {
case Common::PageType::Unmapped: case Common::PageType::Unmapped:
LOG_ERROR(HW_GPU, "Unmapped Write{} 0x{:08X} @ 0x{:016X}", sizeof(data) * 8, LOG_ERROR(HW_GPU, "Unmapped Write{} 0x{:08X} @ 0x{:016X}", sizeof(data) * 8,
static_cast<u32>(data), addr); static_cast<u32>(data), addr);
@ -176,7 +174,7 @@ u8* MemoryManager::GetPointer(GPUVAddr addr) {
return {}; return {};
} }
u8* page_pointer = page_table.pointers[addr >> page_bits]; u8* page_pointer{page_table.pointers[addr >> page_bits]};
if (page_pointer) { if (page_pointer) {
return page_pointer + (addr & page_mask); return page_pointer + (addr & page_mask);
} }
@ -201,7 +199,7 @@ void MemoryManager::MapPages(GPUVAddr base, u64 size, u8* memory, Common::PageTy
LOG_DEBUG(HW_GPU, "Mapping {} onto {:016X}-{:016X}", fmt::ptr(memory), base * page_size, LOG_DEBUG(HW_GPU, "Mapping {} onto {:016X}-{:016X}", fmt::ptr(memory), base * page_size,
(base + size) * page_size); (base + size) * page_size);
VAddr end = base + size; const VAddr end{base + size};
ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}", ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}",
base + page_table.pointers.size()); base + page_table.pointers.size());
@ -257,56 +255,58 @@ MemoryManager::VMAHandle MemoryManager::FindVMA(GPUVAddr target) const {
} }
} }
MemoryManager::VMAIter MemoryManager::Allocate(VMAIter vma_handle) {
VirtualMemoryArea& vma{vma_handle->second};
vma.type = VirtualMemoryArea::Type::Allocated;
vma.backing_addr = 0;
vma.backing_memory = {};
UpdatePageTableForVMA(vma);
return MergeAdjacent(vma_handle);
}
MemoryManager::VMAHandle MemoryManager::AllocateMemory(GPUVAddr target, std::size_t offset, MemoryManager::VMAHandle MemoryManager::AllocateMemory(GPUVAddr target, std::size_t offset,
u64 size) { u64 size) {
// This is the appropriately sized VMA that will turn into our allocation. // This is the appropriately sized VMA that will turn into our allocation.
VMAIter vma_handle = CarveVMA(target, size); VMAIter vma_handle{CarveVMA(target, size)};
VirtualMemoryArea& final_vma = vma_handle->second; VirtualMemoryArea& vma{vma_handle->second};
ASSERT(final_vma.size == size);
final_vma.type = VirtualMemoryArea::Type::Allocated; ASSERT(vma.size == size);
final_vma.offset = offset;
UpdatePageTableForVMA(final_vma);
return MergeAdjacent(vma_handle); vma.offset = offset;
return Allocate(vma_handle);
} }
MemoryManager::VMAHandle MemoryManager::MapBackingMemory(GPUVAddr target, u8* memory, u64 size, MemoryManager::VMAHandle MemoryManager::MapBackingMemory(GPUVAddr target, u8* memory, u64 size,
VAddr backing_addr) { VAddr backing_addr) {
// This is the appropriately sized VMA that will turn into our allocation. // This is the appropriately sized VMA that will turn into our allocation.
VMAIter vma_handle = CarveVMA(target, size); VMAIter vma_handle{CarveVMA(target, size)};
VirtualMemoryArea& final_vma = vma_handle->second; VirtualMemoryArea& vma{vma_handle->second};
ASSERT(final_vma.size == size);
final_vma.type = VirtualMemoryArea::Type::Mapped; ASSERT(vma.size == size);
final_vma.backing_memory = memory;
final_vma.backing_addr = backing_addr;
UpdatePageTableForVMA(final_vma);
return MergeAdjacent(vma_handle);
}
MemoryManager::VMAIter MemoryManager::Unmap(VMAIter vma_handle) {
VirtualMemoryArea& vma = vma_handle->second;
vma.type = VirtualMemoryArea::Type::Allocated;
vma.offset = 0;
vma.backing_memory = nullptr;
vma.type = VirtualMemoryArea::Type::Mapped;
vma.backing_memory = memory;
vma.backing_addr = backing_addr;
UpdatePageTableForVMA(vma); UpdatePageTableForVMA(vma);
return MergeAdjacent(vma_handle); return MergeAdjacent(vma_handle);
} }
void MemoryManager::UnmapRange(GPUVAddr target, u64 size) { void MemoryManager::UnmapRange(GPUVAddr target, u64 size) {
VMAIter vma = CarveVMARange(target, size); VMAIter vma{CarveVMARange(target, size)};
const VAddr target_end = target + size; const VAddr target_end{target + size};
const VMAIter end{vma_map.end()};
const VMAIter end = vma_map.end();
// The comparison against the end of the range must be done using addresses since VMAs can be // The comparison against the end of the range must be done using addresses since VMAs can be
// merged during this process, causing invalidation of the iterators. // merged during this process, causing invalidation of the iterators.
while (vma != end && vma->second.base < target_end) { while (vma != end && vma->second.base < target_end) {
vma = std::next(Unmap(vma)); // Unmapped ranges return to allocated state and can be reused
// This behavior is used by Super Mario Odyssey, Sonic Forces, and likely other games
vma = std::next(Allocate(vma));
} }
ASSERT(FindVMA(target)->second.size >= size); ASSERT(FindVMA(target)->second.size >= size);
@ -319,25 +319,26 @@ MemoryManager::VMAIter MemoryManager::StripIterConstness(const VMAHandle& iter)
} }
MemoryManager::VMAIter MemoryManager::CarveVMA(GPUVAddr base, u64 size) { MemoryManager::VMAIter MemoryManager::CarveVMA(GPUVAddr base, u64 size) {
ASSERT_MSG((size & Tegra::MemoryManager::page_mask) == 0, "non-page aligned size: 0x{:016X}", ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: 0x{:016X}", size);
size); ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: 0x{:016X}", base);
ASSERT_MSG((base & Tegra::MemoryManager::page_mask) == 0, "non-page aligned base: 0x{:016X}",
base);
VMAIter vma_handle = StripIterConstness(FindVMA(base)); VMAIter vma_handle{StripIterConstness(FindVMA(base))};
if (vma_handle == vma_map.end()) { if (vma_handle == vma_map.end()) {
// Target address is outside the range managed by the kernel // Target address is outside the managed range
return {}; return {};
} }
const VirtualMemoryArea& vma = vma_handle->second; const VirtualMemoryArea& vma{vma_handle->second};
if (vma.type == VirtualMemoryArea::Type::Mapped) { if (vma.type == VirtualMemoryArea::Type::Mapped) {
// Region is already allocated // Region is already allocated
return {}; return {};
} }
const VAddr start_in_vma = base - vma.base; const VAddr start_in_vma{base - vma.base};
const VAddr end_in_vma = start_in_vma + size; const VAddr end_in_vma{start_in_vma + size};
ASSERT_MSG(end_in_vma <= vma.size, "region size 0x{:016X} is less than required size 0x{:016X}",
vma.size, end_in_vma);
if (end_in_vma < vma.size) { if (end_in_vma < vma.size) {
// Split VMA at the end of the allocated region // Split VMA at the end of the allocated region
@ -352,17 +353,15 @@ MemoryManager::VMAIter MemoryManager::CarveVMA(GPUVAddr base, u64 size) {
} }
MemoryManager::VMAIter MemoryManager::CarveVMARange(GPUVAddr target, u64 size) { MemoryManager::VMAIter MemoryManager::CarveVMARange(GPUVAddr target, u64 size) {
ASSERT_MSG((size & Tegra::MemoryManager::page_mask) == 0, "non-page aligned size: 0x{:016X}", ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: 0x{:016X}", size);
size); ASSERT_MSG((target & page_mask) == 0, "non-page aligned base: 0x{:016X}", target);
ASSERT_MSG((target & Tegra::MemoryManager::page_mask) == 0, "non-page aligned base: 0x{:016X}",
target);
const VAddr target_end = target + size; const VAddr target_end{target + size};
ASSERT(target_end >= target); ASSERT(target_end >= target);
ASSERT(size > 0); ASSERT(size > 0);
VMAIter begin_vma = StripIterConstness(FindVMA(target)); VMAIter begin_vma{StripIterConstness(FindVMA(target))};
const VMAIter i_end = vma_map.lower_bound(target_end); const VMAIter i_end{vma_map.lower_bound(target_end)};
if (std::any_of(begin_vma, i_end, [](const auto& entry) { if (std::any_of(begin_vma, i_end, [](const auto& entry) {
return entry.second.type == VirtualMemoryArea::Type::Unmapped; return entry.second.type == VirtualMemoryArea::Type::Unmapped;
})) { })) {
@ -373,7 +372,7 @@ MemoryManager::VMAIter MemoryManager::CarveVMARange(GPUVAddr target, u64 size) {
begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base); begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base);
} }
VMAIter end_vma = StripIterConstness(FindVMA(target_end)); VMAIter end_vma{StripIterConstness(FindVMA(target_end))};
if (end_vma != vma_map.end() && target_end != end_vma->second.base) { if (end_vma != vma_map.end() && target_end != end_vma->second.base) {
end_vma = SplitVMA(end_vma, target_end - end_vma->second.base); end_vma = SplitVMA(end_vma, target_end - end_vma->second.base);
} }
@ -382,8 +381,8 @@ MemoryManager::VMAIter MemoryManager::CarveVMARange(GPUVAddr target, u64 size) {
} }
MemoryManager::VMAIter MemoryManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) { MemoryManager::VMAIter MemoryManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) {
VirtualMemoryArea& old_vma = vma_handle->second; VirtualMemoryArea& old_vma{vma_handle->second};
VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA VirtualMemoryArea new_vma{old_vma}; // Make a copy of the VMA
// For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably // For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably
// a bug. This restriction might be removed later. // a bug. This restriction might be removed later.
@ -411,14 +410,14 @@ MemoryManager::VMAIter MemoryManager::SplitVMA(VMAIter vma_handle, u64 offset_in
} }
MemoryManager::VMAIter MemoryManager::MergeAdjacent(VMAIter iter) { MemoryManager::VMAIter MemoryManager::MergeAdjacent(VMAIter iter) {
const VMAIter next_vma = std::next(iter); const VMAIter next_vma{std::next(iter)};
if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) { if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) {
iter->second.size += next_vma->second.size; iter->second.size += next_vma->second.size;
vma_map.erase(next_vma); vma_map.erase(next_vma);
} }
if (iter != vma_map.begin()) { if (iter != vma_map.begin()) {
VMAIter prev_vma = std::prev(iter); VMAIter prev_vma{std::prev(iter)};
if (prev_vma->second.CanBeMergedWith(iter->second)) { if (prev_vma->second.CanBeMergedWith(iter->second)) {
prev_vma->second.size += iter->second.size; prev_vma->second.size += iter->second.size;
vma_map.erase(iter); vma_map.erase(iter);

View file

@ -47,8 +47,8 @@ public:
GPUVAddr AllocateSpace(u64 size, u64 align); GPUVAddr AllocateSpace(u64 size, u64 align);
GPUVAddr AllocateSpace(GPUVAddr addr, u64 size, u64 align); GPUVAddr AllocateSpace(GPUVAddr addr, u64 size, u64 align);
GPUVAddr MapBufferEx(GPUVAddr cpu_addr, u64 size); GPUVAddr MapBufferEx(VAddr cpu_addr, u64 size);
GPUVAddr MapBufferEx(GPUVAddr cpu_addr, GPUVAddr addr, u64 size); GPUVAddr MapBufferEx(VAddr cpu_addr, GPUVAddr addr, u64 size);
GPUVAddr UnmapBuffer(GPUVAddr addr, u64 size); GPUVAddr UnmapBuffer(GPUVAddr addr, u64 size);
std::optional<VAddr> GpuToCpuAddress(GPUVAddr addr); std::optional<VAddr> GpuToCpuAddress(GPUVAddr addr);
@ -96,8 +96,8 @@ private:
/// Converts a VMAHandle to a mutable VMAIter. /// Converts a VMAHandle to a mutable VMAIter.
VMAIter StripIterConstness(const VMAHandle& iter); VMAIter StripIterConstness(const VMAHandle& iter);
/// Unmaps the given VMA. /// Marks as the specfied VMA as allocated.
VMAIter Unmap(VMAIter vma); VMAIter Allocate(VMAIter vma);
/** /**
* Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing * Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing
@ -135,11 +135,11 @@ private:
static constexpr u64 page_mask{page_size - 1}; static constexpr u64 page_mask{page_size - 1};
/// Address space in bits, this is fairly arbitrary but sufficiently large. /// Address space in bits, this is fairly arbitrary but sufficiently large.
static constexpr u32 address_space_width = 39; static constexpr u32 address_space_width{39};
/// Start address for mapping, this is fairly arbitrary but must be non-zero. /// Start address for mapping, this is fairly arbitrary but must be non-zero.
static constexpr GPUVAddr address_space_base = 0x100000; static constexpr GPUVAddr address_space_base{0x100000};
/// End of address space, based on address space in bits. /// End of address space, based on address space in bits.
static constexpr GPUVAddr address_space_end = 1ULL << address_space_width; static constexpr GPUVAddr address_space_end{1ULL << address_space_width};
Common::PageTable page_table{page_bits}; Common::PageTable page_table{page_bits};
VMAMap vma_map; VMAMap vma_map;