2015-05-21 03:37:07 +00:00
|
|
|
// Copyright 2015 Citra Emulator Project
|
|
|
|
// Licensed under GPLv2 or any later version
|
|
|
|
// Refer to the license.txt file included.
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include <map>
|
|
|
|
#include <memory>
|
|
|
|
#include <vector>
|
|
|
|
#include "common/common_types.h"
|
|
|
|
#include "core/hle/result.h"
|
2017-07-22 02:17:57 +00:00
|
|
|
#include "core/memory.h"
|
2018-01-27 15:16:39 +00:00
|
|
|
#include "core/memory_hook.h"
|
2015-05-21 03:37:07 +00:00
|
|
|
|
2018-09-23 00:09:32 +00:00
|
|
|
namespace FileSys {
|
|
|
|
enum class ProgramAddressSpaceType : u8;
|
|
|
|
}
|
|
|
|
|
2015-05-21 03:37:07 +00:00
|
|
|
namespace Kernel {
|
|
|
|
|
|
|
|
enum class VMAType : u8 {
|
|
|
|
/// VMA represents an unmapped region of the address space.
|
|
|
|
Free,
|
|
|
|
/// VMA is backed by a ref-counted allocate memory block.
|
|
|
|
AllocatedMemoryBlock,
|
|
|
|
/// VMA is backed by a raw, unmanaged pointer.
|
|
|
|
BackingMemory,
|
|
|
|
/// VMA is mapped to MMIO registers at a fixed PAddr.
|
|
|
|
MMIO,
|
|
|
|
// TODO(yuriks): Implement MemoryAlias to support MAP/UNMAP
|
|
|
|
};
|
|
|
|
|
|
|
|
/// Permissions for mapped memory blocks
|
|
|
|
enum class VMAPermission : u8 {
|
|
|
|
None = 0,
|
|
|
|
Read = 1,
|
|
|
|
Write = 2,
|
|
|
|
Execute = 4,
|
|
|
|
|
|
|
|
ReadWrite = Read | Write,
|
|
|
|
ReadExecute = Read | Execute,
|
|
|
|
WriteExecute = Write | Execute,
|
|
|
|
ReadWriteExecute = Read | Write | Execute,
|
|
|
|
};
|
|
|
|
|
|
|
|
/// Set of values returned in MemoryInfo.state by svcQueryMemory.
|
2017-10-20 03:00:46 +00:00
|
|
|
enum class MemoryState : u32 {
|
2018-03-10 22:46:23 +00:00
|
|
|
Unmapped = 0x0,
|
|
|
|
Io = 0x1,
|
|
|
|
Normal = 0x2,
|
|
|
|
CodeStatic = 0x3,
|
|
|
|
CodeMutable = 0x4,
|
|
|
|
Heap = 0x5,
|
|
|
|
Shared = 0x6,
|
|
|
|
ModuleCodeStatic = 0x8,
|
|
|
|
ModuleCodeMutable = 0x9,
|
|
|
|
IpcBuffer0 = 0xA,
|
|
|
|
Mapped = 0xB,
|
|
|
|
ThreadLocal = 0xC,
|
|
|
|
TransferMemoryIsolated = 0xD,
|
|
|
|
TransferMemory = 0xE,
|
|
|
|
ProcessMemory = 0xF,
|
|
|
|
IpcBuffer1 = 0x11,
|
|
|
|
IpcBuffer3 = 0x12,
|
|
|
|
KernelStack = 0x13,
|
2015-05-21 03:37:07 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Represents a VMA in an address space. A VMA is a contiguous region of virtual addressing space
|
|
|
|
* with homogeneous attributes across its extents. In this particular implementation each VMA is
|
|
|
|
* also backed by a single host memory allocation.
|
|
|
|
*/
|
|
|
|
struct VirtualMemoryArea {
|
|
|
|
/// Virtual base address of the region.
|
|
|
|
VAddr base = 0;
|
|
|
|
/// Size of the region.
|
2017-09-02 03:10:03 +00:00
|
|
|
u64 size = 0;
|
2015-05-21 03:37:07 +00:00
|
|
|
|
|
|
|
VMAType type = VMAType::Free;
|
|
|
|
VMAPermission permissions = VMAPermission::None;
|
|
|
|
/// Tag returned by svcQueryMemory. Not otherwise used.
|
2018-03-10 22:46:23 +00:00
|
|
|
MemoryState meminfo_state = MemoryState::Unmapped;
|
2015-05-21 03:37:07 +00:00
|
|
|
|
|
|
|
// Settings for type = AllocatedMemoryBlock
|
|
|
|
/// Memory block backing this VMA.
|
|
|
|
std::shared_ptr<std::vector<u8>> backing_block = nullptr;
|
|
|
|
/// Offset into the backing_memory the mapping starts from.
|
2018-09-15 13:21:06 +00:00
|
|
|
std::size_t offset = 0;
|
2015-05-21 03:37:07 +00:00
|
|
|
|
|
|
|
// Settings for type = BackingMemory
|
|
|
|
/// Pointer backing this VMA. It will not be destroyed or freed when the VMA is removed.
|
|
|
|
u8* backing_memory = nullptr;
|
|
|
|
|
|
|
|
// Settings for type = MMIO
|
|
|
|
/// Physical address of the register area this VMA maps to.
|
|
|
|
PAddr paddr = 0;
|
2018-01-27 15:16:39 +00:00
|
|
|
Memory::MemoryHookPointer mmio_handler = nullptr;
|
2015-05-21 03:37:07 +00:00
|
|
|
|
|
|
|
/// Tests if this area can be merged to the right with `next`.
|
|
|
|
bool CanBeMergedWith(const VirtualMemoryArea& next) const;
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Manages a process' virtual addressing space. This class maintains a list of allocated and free
|
|
|
|
* regions in the address space, along with their attributes, and allows kernel clients to
|
|
|
|
* manipulate it, adjusting the page table to match.
|
|
|
|
*
|
|
|
|
* This is similar in idea and purpose to the VM manager present in operating system kernels, with
|
|
|
|
* the main difference being that it doesn't have to support swapping or memory mapping of files.
|
|
|
|
* The implementation is also simplified by not having to allocate page frames. See these articles
|
|
|
|
* about the Linux kernel for an explantion of the concept and implementation:
|
|
|
|
* - http://duartes.org/gustavo/blog/post/how-the-kernel-manages-your-memory/
|
|
|
|
* - http://duartes.org/gustavo/blog/post/page-cache-the-affair-between-memory-and-files/
|
|
|
|
*/
|
2015-07-10 01:52:15 +00:00
|
|
|
class VMManager final {
|
2015-05-21 03:37:07 +00:00
|
|
|
public:
|
|
|
|
/**
|
|
|
|
* A map covering the entirety of the managed address space, keyed by the `base` field of each
|
|
|
|
* VMA. It must always be modified by splitting or merging VMAs, so that the invariant
|
|
|
|
* `elem.base + elem.size == next.base` is preserved, and mergeable regions must always be
|
|
|
|
* merged when possible so that no two similar and adjacent regions exist that have not been
|
|
|
|
* merged.
|
|
|
|
*/
|
|
|
|
std::map<VAddr, VirtualMemoryArea> vma_map;
|
|
|
|
using VMAHandle = decltype(vma_map)::const_iterator;
|
|
|
|
|
|
|
|
VMManager();
|
2015-07-10 01:52:15 +00:00
|
|
|
~VMManager();
|
2015-05-21 03:37:07 +00:00
|
|
|
|
|
|
|
/// Clears the address space map, re-initializing with a single free area.
|
2018-09-23 00:09:32 +00:00
|
|
|
void Reset(FileSys::ProgramAddressSpaceType type);
|
2015-05-21 03:37:07 +00:00
|
|
|
|
|
|
|
/// Finds the VMA in which the given address is included in, or `vma_map.end()`.
|
|
|
|
VMAHandle FindVMA(VAddr target) const;
|
|
|
|
|
|
|
|
// TODO(yuriks): Should these functions actually return the handle?
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Maps part of a ref-counted block of memory at a given address.
|
|
|
|
*
|
|
|
|
* @param target The guest address to start the mapping at.
|
|
|
|
* @param block The block to be mapped.
|
|
|
|
* @param offset Offset into `block` to map from.
|
|
|
|
* @param size Size of the mapping.
|
|
|
|
* @param state MemoryState tag to attach to the VMA.
|
|
|
|
*/
|
|
|
|
ResultVal<VMAHandle> MapMemoryBlock(VAddr target, std::shared_ptr<std::vector<u8>> block,
|
2018-09-15 13:21:06 +00:00
|
|
|
std::size_t offset, u64 size, MemoryState state);
|
2015-05-21 03:37:07 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* Maps an unmanaged host memory pointer at a given address.
|
|
|
|
*
|
|
|
|
* @param target The guest address to start the mapping at.
|
|
|
|
* @param memory The memory to be mapped.
|
|
|
|
* @param size Size of the mapping.
|
|
|
|
* @param state MemoryState tag to attach to the VMA.
|
|
|
|
*/
|
2017-09-02 03:10:03 +00:00
|
|
|
ResultVal<VMAHandle> MapBackingMemory(VAddr target, u8* memory, u64 size, MemoryState state);
|
2015-05-21 03:37:07 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* Maps a memory-mapped IO region at a given address.
|
|
|
|
*
|
|
|
|
* @param target The guest address to start the mapping at.
|
|
|
|
* @param paddr The physical address where the registers are present.
|
|
|
|
* @param size Size of the mapping.
|
|
|
|
* @param state MemoryState tag to attach to the VMA.
|
2016-01-30 18:41:04 +00:00
|
|
|
* @param mmio_handler The handler that will implement read and write for this MMIO region.
|
2015-05-21 03:37:07 +00:00
|
|
|
*/
|
2017-09-02 03:10:03 +00:00
|
|
|
ResultVal<VMAHandle> MapMMIO(VAddr target, PAddr paddr, u64 size, MemoryState state,
|
2018-01-27 15:16:39 +00:00
|
|
|
Memory::MemoryHookPointer mmio_handler);
|
2015-05-21 03:37:07 +00:00
|
|
|
|
2015-07-18 02:19:16 +00:00
|
|
|
/// Unmaps a range of addresses, splitting VMAs as necessary.
|
2017-09-02 03:10:03 +00:00
|
|
|
ResultCode UnmapRange(VAddr target, u64 size);
|
2015-05-21 03:37:07 +00:00
|
|
|
|
|
|
|
/// Changes the permissions of the given VMA.
|
2015-07-18 02:19:16 +00:00
|
|
|
VMAHandle Reprotect(VMAHandle vma, VMAPermission new_perms);
|
|
|
|
|
|
|
|
/// Changes the permissions of a range of addresses, splitting VMAs as necessary.
|
2017-09-02 03:10:03 +00:00
|
|
|
ResultCode ReprotectRange(VAddr target, u64 size, VMAPermission new_perms);
|
2015-07-18 02:19:16 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* Scans all VMAs and updates the page table range of any that use the given vector as backing
|
|
|
|
* memory. This should be called after any operation that causes reallocation of the vector.
|
|
|
|
*/
|
|
|
|
void RefreshMemoryBlockMappings(const std::vector<u8>* block);
|
2015-05-21 03:37:07 +00:00
|
|
|
|
2015-07-10 01:52:15 +00:00
|
|
|
/// Dumps the address space layout to the log, for debugging
|
2018-04-27 15:49:18 +00:00
|
|
|
void LogLayout() const;
|
2015-07-10 01:52:15 +00:00
|
|
|
|
2018-01-01 20:59:31 +00:00
|
|
|
/// Gets the total memory usage, used by svcGetInfo
|
2018-08-02 16:19:05 +00:00
|
|
|
u64 GetTotalMemoryUsage() const;
|
2018-01-01 20:59:31 +00:00
|
|
|
|
|
|
|
/// Gets the total heap usage, used by svcGetInfo
|
2018-08-02 16:19:05 +00:00
|
|
|
u64 GetTotalHeapUsage() const;
|
2018-01-01 20:59:31 +00:00
|
|
|
|
2018-09-24 15:16:17 +00:00
|
|
|
/// Gets the address space base address
|
|
|
|
VAddr GetAddressSpaceBaseAddress() const;
|
|
|
|
|
|
|
|
/// Gets the address space end address
|
|
|
|
VAddr GetAddressSpaceEndAddress() const;
|
2018-01-01 20:59:31 +00:00
|
|
|
|
2018-09-24 15:16:17 +00:00
|
|
|
/// Gets the total address space address size in bytes
|
2018-08-02 16:19:05 +00:00
|
|
|
u64 GetAddressSpaceSize() const;
|
2018-01-01 20:59:31 +00:00
|
|
|
|
2018-09-24 14:29:56 +00:00
|
|
|
/// Gets the address space width in bits.
|
|
|
|
u64 GetAddressSpaceWidth() const;
|
|
|
|
|
svc: Clarify enum values for AddressSpaceBaseAddr and AddressSpaceSize in svcGetInfo()
So, one thing that's puzzled me is why the kernel seemed to *not* use
the direct code address ranges in some cases for some service functions.
For example, in svcMapMemory, the full address space width is compared
against for validity, but for svcMapSharedMemory, it compares against
0xFFE00000, 0xFF8000000, and 0x7FF8000000 as upper bounds, and uses
either 0x200000 or 0x8000000 as the lower-bounds as the beginning of the
compared range. Coincidentally, these exact same values are also used in
svcGetInfo, and also when initializing the user address space, so this
is actually retrieving the ASLR extents, not the extents of the address
space in general.
2018-10-14 18:44:38 +00:00
|
|
|
/// Gets the base address of the ASLR region.
|
|
|
|
VAddr GetASLRRegionBaseAddress() const;
|
|
|
|
|
|
|
|
/// Gets the end address of the ASLR region.
|
|
|
|
VAddr GetASLRRegionEndAddress() const;
|
|
|
|
|
2018-10-18 02:39:21 +00:00
|
|
|
/// Determines whether or not the specified address range is within the ASLR region.
|
|
|
|
bool IsWithinASLRRegion(VAddr address, u64 size) const;
|
|
|
|
|
svc: Clarify enum values for AddressSpaceBaseAddr and AddressSpaceSize in svcGetInfo()
So, one thing that's puzzled me is why the kernel seemed to *not* use
the direct code address ranges in some cases for some service functions.
For example, in svcMapMemory, the full address space width is compared
against for validity, but for svcMapSharedMemory, it compares against
0xFFE00000, 0xFF8000000, and 0x7FF8000000 as upper bounds, and uses
either 0x200000 or 0x8000000 as the lower-bounds as the beginning of the
compared range. Coincidentally, these exact same values are also used in
svcGetInfo, and also when initializing the user address space, so this
is actually retrieving the ASLR extents, not the extents of the address
space in general.
2018-10-14 18:44:38 +00:00
|
|
|
/// Gets the size of the ASLR region
|
|
|
|
u64 GetASLRRegionSize() const;
|
|
|
|
|
2018-09-23 00:09:32 +00:00
|
|
|
/// Gets the base address of the code region.
|
|
|
|
VAddr GetCodeRegionBaseAddress() const;
|
|
|
|
|
|
|
|
/// Gets the end address of the code region.
|
|
|
|
VAddr GetCodeRegionEndAddress() const;
|
|
|
|
|
|
|
|
/// Gets the total size of the code region in bytes.
|
|
|
|
u64 GetCodeRegionSize() const;
|
|
|
|
|
|
|
|
/// Gets the base address of the heap region.
|
|
|
|
VAddr GetHeapRegionBaseAddress() const;
|
|
|
|
|
|
|
|
/// Gets the end address of the heap region;
|
|
|
|
VAddr GetHeapRegionEndAddress() const;
|
|
|
|
|
|
|
|
/// Gets the total size of the heap region in bytes.
|
|
|
|
u64 GetHeapRegionSize() const;
|
|
|
|
|
|
|
|
/// Gets the base address of the map region.
|
|
|
|
VAddr GetMapRegionBaseAddress() const;
|
|
|
|
|
|
|
|
/// Gets the end address of the map region.
|
|
|
|
VAddr GetMapRegionEndAddress() const;
|
|
|
|
|
|
|
|
/// Gets the total size of the map region in bytes.
|
|
|
|
u64 GetMapRegionSize() const;
|
|
|
|
|
|
|
|
/// Gets the base address of the new map region.
|
|
|
|
VAddr GetNewMapRegionBaseAddress() const;
|
|
|
|
|
|
|
|
/// Gets the end address of the new map region.
|
|
|
|
VAddr GetNewMapRegionEndAddress() const;
|
|
|
|
|
|
|
|
/// Gets the total size of the new map region in bytes.
|
|
|
|
u64 GetNewMapRegionSize() const;
|
|
|
|
|
|
|
|
/// Gets the base address of the TLS IO region.
|
|
|
|
VAddr GetTLSIORegionBaseAddress() const;
|
|
|
|
|
|
|
|
/// Gets the end address of the TLS IO region.
|
|
|
|
VAddr GetTLSIORegionEndAddress() const;
|
|
|
|
|
|
|
|
/// Gets the total size of the TLS IO region in bytes.
|
|
|
|
u64 GetTLSIORegionSize() const;
|
|
|
|
|
2017-07-22 02:17:57 +00:00
|
|
|
/// Each VMManager has its own page table, which is set as the main one when the owning process
|
|
|
|
/// is scheduled.
|
|
|
|
Memory::PageTable page_table;
|
|
|
|
|
2015-05-21 03:37:07 +00:00
|
|
|
private:
|
|
|
|
using VMAIter = decltype(vma_map)::iterator;
|
|
|
|
|
|
|
|
/// Converts a VMAHandle to a mutable VMAIter.
|
|
|
|
VMAIter StripIterConstness(const VMAHandle& iter);
|
|
|
|
|
2015-07-18 02:19:16 +00:00
|
|
|
/// Unmaps the given VMA.
|
|
|
|
VMAIter Unmap(VMAIter vma);
|
|
|
|
|
2015-05-21 03:37:07 +00:00
|
|
|
/**
|
|
|
|
* Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing
|
|
|
|
* the appropriate error checking.
|
|
|
|
*/
|
2017-09-02 03:10:03 +00:00
|
|
|
ResultVal<VMAIter> CarveVMA(VAddr base, u64 size);
|
2015-05-21 03:37:07 +00:00
|
|
|
|
2015-07-18 02:19:16 +00:00
|
|
|
/**
|
|
|
|
* Splits the edges of the given range of non-Free VMAs so that there is a VMA split at each
|
|
|
|
* end of the range.
|
|
|
|
*/
|
2017-09-02 03:10:03 +00:00
|
|
|
ResultVal<VMAIter> CarveVMARange(VAddr base, u64 size);
|
2015-07-18 02:19:16 +00:00
|
|
|
|
2015-05-21 03:37:07 +00:00
|
|
|
/**
|
|
|
|
* Splits a VMA in two, at the specified offset.
|
|
|
|
* @returns the right side of the split, with the original iterator becoming the left side.
|
|
|
|
*/
|
2017-09-02 03:10:03 +00:00
|
|
|
VMAIter SplitVMA(VMAIter vma, u64 offset_in_vma);
|
2015-05-21 03:37:07 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* Checks for and merges the specified VMA with adjacent ones if possible.
|
|
|
|
* @returns the merged VMA or the original if no merging was possible.
|
|
|
|
*/
|
|
|
|
VMAIter MergeAdjacent(VMAIter vma);
|
|
|
|
|
|
|
|
/// Updates the pages corresponding to this VMA so they match the VMA's attributes.
|
|
|
|
void UpdatePageTableForVMA(const VirtualMemoryArea& vma);
|
2018-09-23 00:09:32 +00:00
|
|
|
|
|
|
|
/// Initializes memory region ranges to adhere to a given address space type.
|
|
|
|
void InitializeMemoryRegionRanges(FileSys::ProgramAddressSpaceType type);
|
|
|
|
|
|
|
|
/// Clears the underlying map and page table.
|
|
|
|
void Clear();
|
|
|
|
|
|
|
|
/// Clears out the VMA map, unmapping any previously mapped ranges.
|
|
|
|
void ClearVMAMap();
|
|
|
|
|
|
|
|
/// Clears out the page table
|
|
|
|
void ClearPageTable();
|
|
|
|
|
|
|
|
u32 address_space_width = 0;
|
|
|
|
VAddr address_space_base = 0;
|
|
|
|
VAddr address_space_end = 0;
|
|
|
|
|
svc: Clarify enum values for AddressSpaceBaseAddr and AddressSpaceSize in svcGetInfo()
So, one thing that's puzzled me is why the kernel seemed to *not* use
the direct code address ranges in some cases for some service functions.
For example, in svcMapMemory, the full address space width is compared
against for validity, but for svcMapSharedMemory, it compares against
0xFFE00000, 0xFF8000000, and 0x7FF8000000 as upper bounds, and uses
either 0x200000 or 0x8000000 as the lower-bounds as the beginning of the
compared range. Coincidentally, these exact same values are also used in
svcGetInfo, and also when initializing the user address space, so this
is actually retrieving the ASLR extents, not the extents of the address
space in general.
2018-10-14 18:44:38 +00:00
|
|
|
VAddr aslr_region_base = 0;
|
|
|
|
VAddr aslr_region_end = 0;
|
|
|
|
|
2018-09-23 00:09:32 +00:00
|
|
|
VAddr code_region_base = 0;
|
|
|
|
VAddr code_region_end = 0;
|
|
|
|
|
|
|
|
VAddr heap_region_base = 0;
|
|
|
|
VAddr heap_region_end = 0;
|
|
|
|
|
|
|
|
VAddr map_region_base = 0;
|
|
|
|
VAddr map_region_end = 0;
|
|
|
|
|
|
|
|
VAddr new_map_region_base = 0;
|
|
|
|
VAddr new_map_region_end = 0;
|
|
|
|
|
|
|
|
VAddr tls_io_region_base = 0;
|
|
|
|
VAddr tls_io_region_end = 0;
|
2015-05-21 03:37:07 +00:00
|
|
|
};
|
2018-01-03 02:37:56 +00:00
|
|
|
} // namespace Kernel
|