yuzu/src/common/x64/native_clock.cpp

165 lines
5.9 KiB
C++
Raw Normal View History

// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <array>
#include <chrono>
#include <thread>
2021-11-28 11:21:45 +00:00
#include "common/atomic_ops.h"
#include "common/steady_clock.h"
#include "common/uint128.h"
#include "common/x64/native_clock.h"
2022-04-02 20:54:39 +00:00
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace Common {
2022-04-02 20:54:39 +00:00
#ifdef _MSC_VER
__forceinline static u64 FencedRDTSC() {
2022-04-02 20:54:39 +00:00
_mm_lfence();
_ReadWriteBarrier();
const u64 result = __rdtsc();
_mm_lfence();
_ReadWriteBarrier();
return result;
}
2022-04-02 20:54:39 +00:00
#else
static u64 FencedRDTSC() {
u64 eax;
u64 edx;
2022-04-02 20:54:39 +00:00
asm volatile("lfence\n\t"
"rdtsc\n\t"
"lfence\n\t"
: "=a"(eax), "=d"(edx));
return (edx << 32) | eax;
2022-04-02 20:54:39 +00:00
}
#endif
2022-04-02 20:54:39 +00:00
template <u64 Nearest>
static u64 RoundToNearest(u64 value) {
const auto mod = value % Nearest;
return mod >= (Nearest / 2) ? (value - mod + Nearest) : (value - mod);
}
u64 EstimateRDTSCFrequency() {
// Discard the first result measuring the rdtsc.
2022-04-02 20:54:39 +00:00
FencedRDTSC();
std::this_thread::sleep_for(std::chrono::milliseconds{1});
2022-04-02 20:54:39 +00:00
FencedRDTSC();
// Get the current time.
const auto start_time = Common::RealTimeClock::Now();
2022-04-02 20:54:39 +00:00
const u64 tsc_start = FencedRDTSC();
// Wait for 250 milliseconds.
std::this_thread::sleep_for(std::chrono::milliseconds{250});
const auto end_time = Common::RealTimeClock::Now();
2022-04-02 20:54:39 +00:00
const u64 tsc_end = FencedRDTSC();
// Calculate differences.
const u64 timer_diff = static_cast<u64>(
std::chrono::duration_cast<std::chrono::nanoseconds>(end_time - start_time).count());
const u64 tsc_diff = tsc_end - tsc_start;
const u64 tsc_freq = MultiplyAndDivide64(tsc_diff, 1000000000ULL, timer_diff);
return RoundToNearest<1000>(tsc_freq);
}
namespace X64 {
NativeClock::NativeClock(u64 emulated_cpu_frequency_, u64 emulated_clock_frequency_,
u64 rtsc_frequency_)
: WallClock(emulated_cpu_frequency_, emulated_clock_frequency_, true), rtsc_frequency{
rtsc_frequency_} {
// Thread to re-adjust the RDTSC frequency after 10 seconds has elapsed.
time_sync_thread = std::jthread{[this](std::stop_token token) {
// Get the current time.
const auto start_time = Common::RealTimeClock::Now();
const u64 tsc_start = FencedRDTSC();
// Wait for 10 seconds.
if (!Common::StoppableTimedWait(token, std::chrono::seconds{10})) {
return;
}
const auto end_time = Common::RealTimeClock::Now();
const u64 tsc_end = FencedRDTSC();
// Calculate differences.
const u64 timer_diff = static_cast<u64>(
std::chrono::duration_cast<std::chrono::nanoseconds>(end_time - start_time).count());
const u64 tsc_diff = tsc_end - tsc_start;
const u64 tsc_freq = MultiplyAndDivide64(tsc_diff, 1000000000ULL, timer_diff);
rtsc_frequency = tsc_freq;
CalculateAndSetFactors();
}};
time_point.inner.last_measure = FencedRDTSC();
time_point.inner.accumulated_ticks = 0U;
CalculateAndSetFactors();
}
u64 NativeClock::GetRTSC() {
TimePoint new_time_point{};
TimePoint current_time_point{};
current_time_point.pack = Common::AtomicLoad128(time_point.pack.data());
do {
2022-04-02 20:54:39 +00:00
const u64 current_measure = FencedRDTSC();
u64 diff = current_measure - current_time_point.inner.last_measure;
diff = diff & ~static_cast<u64>(static_cast<s64>(diff) >> 63); // max(diff, 0)
new_time_point.inner.last_measure = current_measure > current_time_point.inner.last_measure
? current_measure
: current_time_point.inner.last_measure;
new_time_point.inner.accumulated_ticks = current_time_point.inner.accumulated_ticks + diff;
} while (!Common::AtomicCompareAndSwap(time_point.pack.data(), new_time_point.pack,
current_time_point.pack, current_time_point.pack));
return new_time_point.inner.accumulated_ticks;
}
void NativeClock::Pause(bool is_paused) {
if (!is_paused) {
TimePoint current_time_point{};
TimePoint new_time_point{};
current_time_point.pack = Common::AtomicLoad128(time_point.pack.data());
do {
new_time_point.pack = current_time_point.pack;
new_time_point.inner.last_measure = FencedRDTSC();
} while (!Common::AtomicCompareAndSwap(time_point.pack.data(), new_time_point.pack,
current_time_point.pack, current_time_point.pack));
}
}
std::chrono::nanoseconds NativeClock::GetTimeNS() {
const u64 rtsc_value = GetRTSC();
return std::chrono::nanoseconds{MultiplyHigh(rtsc_value, ns_rtsc_factor)};
}
std::chrono::microseconds NativeClock::GetTimeUS() {
const u64 rtsc_value = GetRTSC();
return std::chrono::microseconds{MultiplyHigh(rtsc_value, us_rtsc_factor)};
}
std::chrono::milliseconds NativeClock::GetTimeMS() {
const u64 rtsc_value = GetRTSC();
return std::chrono::milliseconds{MultiplyHigh(rtsc_value, ms_rtsc_factor)};
}
u64 NativeClock::GetClockCycles() {
const u64 rtsc_value = GetRTSC();
return MultiplyHigh(rtsc_value, clock_rtsc_factor);
}
u64 NativeClock::GetCPUCycles() {
const u64 rtsc_value = GetRTSC();
return MultiplyHigh(rtsc_value, cpu_rtsc_factor);
}
void NativeClock::CalculateAndSetFactors() {
ns_rtsc_factor = GetFixedPoint64Factor(NS_RATIO, rtsc_frequency);
us_rtsc_factor = GetFixedPoint64Factor(US_RATIO, rtsc_frequency);
ms_rtsc_factor = GetFixedPoint64Factor(MS_RATIO, rtsc_frequency);
clock_rtsc_factor = GetFixedPoint64Factor(emulated_clock_frequency, rtsc_frequency);
cpu_rtsc_factor = GetFixedPoint64Factor(emulated_cpu_frequency, rtsc_frequency);
}
} // namespace X64
} // namespace Common