311 lines
9.8 KiB
C++
311 lines
9.8 KiB
C++
|
#include <atomic>
|
||
|
#include <list>
|
||
|
#include <mutex>
|
||
|
#include <utility>
|
||
|
#include "input_common/gcadapter/gc_poller.h"
|
||
|
#include "input_common/gcadapter/gc_adapter.h"
|
||
|
#include "common/threadsafe_queue.h"
|
||
|
|
||
|
// Using extern as to avoid multply defined symbols.
|
||
|
extern Common::SPSCQueue<GCPadStatus> pad_queue[4];
|
||
|
extern struct GCState state[4];
|
||
|
|
||
|
namespace InputCommon {
|
||
|
|
||
|
class GCButton final : public Input::ButtonDevice {
|
||
|
public:
|
||
|
explicit GCButton(int port_, int button_, int axis_)
|
||
|
: port(port_), button(button_) {
|
||
|
}
|
||
|
|
||
|
~GCButton() override;
|
||
|
|
||
|
bool GetStatus() const override {
|
||
|
return state[port].buttons.at(button);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
const int port;
|
||
|
const int button;
|
||
|
};
|
||
|
|
||
|
class GCAxisButton final : public Input::ButtonDevice {
|
||
|
public:
|
||
|
explicit GCAxisButton(int port_, int axis_, float threshold_,
|
||
|
bool trigger_if_greater_)
|
||
|
: port(port_), axis(axis_), threshold(threshold_),
|
||
|
trigger_if_greater(trigger_if_greater_) {
|
||
|
}
|
||
|
|
||
|
|
||
|
bool GetStatus() const override {
|
||
|
const float axis_value = (state[port].axes.at(axis) - 128.0f) / 128.0f;
|
||
|
if (trigger_if_greater) {
|
||
|
return axis_value > 0.10f; //TODO(ameerj) : Fix threshold.
|
||
|
}
|
||
|
return axis_value < -0.10f;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
const int port;
|
||
|
const int axis;
|
||
|
float threshold;
|
||
|
bool trigger_if_greater;
|
||
|
};
|
||
|
|
||
|
GCButtonFactory::GCButtonFactory() {
|
||
|
GCAdapter::Init();
|
||
|
}
|
||
|
|
||
|
GCButton::~GCButton() {
|
||
|
GCAdapter::Shutdown();
|
||
|
}
|
||
|
|
||
|
std::unique_ptr<Input::ButtonDevice> GCButtonFactory::Create(const Common::ParamPackage& params) {
|
||
|
int button_id = params.Get("button", 0);
|
||
|
int port = params.Get("port", 0);
|
||
|
// For Axis buttons, used by the binary sticks.
|
||
|
if (params.Has("axis")) {
|
||
|
const int axis = params.Get("axis", 0);
|
||
|
const float threshold = params.Get("threshold", 0.5f);
|
||
|
const std::string direction_name = params.Get("direction", "");
|
||
|
bool trigger_if_greater;
|
||
|
if (direction_name == "+") {
|
||
|
trigger_if_greater = true;
|
||
|
} else if (direction_name == "-") {
|
||
|
trigger_if_greater = false;
|
||
|
} else {
|
||
|
trigger_if_greater = true;
|
||
|
LOG_ERROR(Input, "Unknown direction {}", direction_name);
|
||
|
}
|
||
|
return std::make_unique<GCAxisButton>(port, axis, threshold, trigger_if_greater);
|
||
|
}
|
||
|
|
||
|
std::unique_ptr<GCButton> button =
|
||
|
std::make_unique<GCButton>(port, button_id, params.Get("axis", 0));
|
||
|
return std::move(button);
|
||
|
}
|
||
|
|
||
|
Common::ParamPackage GCButtonFactory::GetNextInput() {
|
||
|
Common::ParamPackage params;
|
||
|
GCPadStatus pad;
|
||
|
for (int i = 0; i < 4; i++) {
|
||
|
while (pad_queue[i].Pop(pad)) {
|
||
|
// This while loop will break on the earliest detected button
|
||
|
params.Set("engine", "gcpad");
|
||
|
params.Set("port", i);
|
||
|
// I was debating whether to keep these verbose for ease of reading
|
||
|
// or to use a while loop shifting the bits to test and set the value.
|
||
|
if (pad.button & PAD_BUTTON_A) {
|
||
|
params.Set("button", PAD_BUTTON_A);
|
||
|
break;
|
||
|
}
|
||
|
if (pad.button & PAD_BUTTON_B) {
|
||
|
params.Set("button", PAD_BUTTON_B);
|
||
|
break;
|
||
|
}
|
||
|
if (pad.button & PAD_BUTTON_X) {
|
||
|
params.Set("button", PAD_BUTTON_X);
|
||
|
break;
|
||
|
}
|
||
|
if (pad.button & PAD_BUTTON_Y) {
|
||
|
params.Set("button", PAD_BUTTON_Y);
|
||
|
break;
|
||
|
}
|
||
|
if (pad.button & PAD_BUTTON_DOWN) {
|
||
|
params.Set("button", PAD_BUTTON_DOWN);
|
||
|
break;
|
||
|
}
|
||
|
if (pad.button & PAD_BUTTON_LEFT) {
|
||
|
params.Set("button", PAD_BUTTON_LEFT);
|
||
|
break;
|
||
|
}
|
||
|
if (pad.button & PAD_BUTTON_RIGHT) {
|
||
|
params.Set("button", PAD_BUTTON_RIGHT);
|
||
|
break;
|
||
|
}
|
||
|
if (pad.button & PAD_BUTTON_UP) {
|
||
|
params.Set("button", PAD_BUTTON_UP);
|
||
|
break;
|
||
|
}
|
||
|
if (pad.button & PAD_TRIGGER_L) {
|
||
|
params.Set("button", PAD_TRIGGER_L);
|
||
|
break;
|
||
|
}
|
||
|
if (pad.button & PAD_TRIGGER_R) {
|
||
|
params.Set("button", PAD_TRIGGER_R);
|
||
|
break;
|
||
|
}
|
||
|
if (pad.button & PAD_TRIGGER_Z) {
|
||
|
params.Set("button", PAD_TRIGGER_Z);
|
||
|
break;
|
||
|
}
|
||
|
if (pad.button & PAD_BUTTON_START) {
|
||
|
params.Set("button", PAD_BUTTON_START);
|
||
|
break;
|
||
|
}
|
||
|
// For Axis button implementation
|
||
|
if (pad.axis_which != 255) {
|
||
|
params.Set("axis", pad.axis_which);
|
||
|
params.Set("button", PAD_STICK);
|
||
|
if (pad.axis_value > 128) {
|
||
|
params.Set("direction", "+");
|
||
|
params.Set("threshold", "0.5");
|
||
|
} else {
|
||
|
params.Set("direction", "-");
|
||
|
params.Set("threshold", "-0.5");
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return params;
|
||
|
}
|
||
|
|
||
|
void GCButtonFactory::BeginConfiguration() {
|
||
|
polling = true;
|
||
|
for (int i = 0; i < 4; i++)
|
||
|
pad_queue[i].Clear();
|
||
|
GCAdapter::BeginConfiguration();
|
||
|
}
|
||
|
|
||
|
void GCButtonFactory::EndConfiguration() {
|
||
|
polling = false;
|
||
|
|
||
|
for (int i = 0; i < 4; i++)
|
||
|
pad_queue[i].Clear();
|
||
|
GCAdapter::EndConfiguration();
|
||
|
}
|
||
|
|
||
|
class GCAnalog final : public Input::AnalogDevice {
|
||
|
public:
|
||
|
GCAnalog(int port_, int axis_x_, int axis_y_, float deadzone_)
|
||
|
: port(port_), axis_x(axis_x_), axis_y(axis_y_), deadzone(deadzone_) {
|
||
|
}
|
||
|
|
||
|
float GetAxis(int axis) const {
|
||
|
std::lock_guard lock{mutex};
|
||
|
// division is not by a perfect 128 to account for some variance in center location
|
||
|
// e.g. my device idled at 131 in X, 120 in Y, and full range of motion was in range [20-230]
|
||
|
return (state[port].axes.at(axis) - 128.0f) / 95.0f;
|
||
|
}
|
||
|
|
||
|
std::tuple<float, float> GetAnalog(int axis_x, int axis_y) const {
|
||
|
float x = GetAxis(axis_x);
|
||
|
float y = GetAxis(axis_y);
|
||
|
|
||
|
// Make sure the coordinates are in the unit circle,
|
||
|
// otherwise normalize it.
|
||
|
float r = x * x + y * y;
|
||
|
if (r > 1.0f) {
|
||
|
r = std::sqrt(r);
|
||
|
x /= r;
|
||
|
y /= r;
|
||
|
}
|
||
|
|
||
|
return std::make_tuple(x, y);
|
||
|
}
|
||
|
|
||
|
std::tuple<float, float> GetStatus() const override {
|
||
|
const auto [x, y] = GetAnalog(axis_x, axis_y);
|
||
|
const float r = std::sqrt((x * x) + (y * y));
|
||
|
if (r > deadzone) {
|
||
|
return std::make_tuple(x / r * (r - deadzone) / (1 - deadzone),
|
||
|
y / r * (r - deadzone) / (1 - deadzone));
|
||
|
}
|
||
|
return std::make_tuple<float, float>(0.0f, 0.0f);
|
||
|
}
|
||
|
|
||
|
bool GetAnalogDirectionStatus(Input::AnalogDirection direction) const override {
|
||
|
const auto [x, y] = GetStatus();
|
||
|
const float directional_deadzone = 0.4f;
|
||
|
switch (direction) {
|
||
|
case Input::AnalogDirection::RIGHT:
|
||
|
return x > directional_deadzone;
|
||
|
case Input::AnalogDirection::LEFT:
|
||
|
return x < -directional_deadzone;
|
||
|
case Input::AnalogDirection::UP:
|
||
|
return y > directional_deadzone;
|
||
|
case Input::AnalogDirection::DOWN:
|
||
|
return y < -directional_deadzone;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
const int port;
|
||
|
const int axis_x;
|
||
|
const int axis_y;
|
||
|
const float deadzone;
|
||
|
mutable std::mutex mutex;
|
||
|
};
|
||
|
|
||
|
|
||
|
/// An analog device factory that creates analog devices from GC Adapter
|
||
|
GCAnalogFactory::GCAnalogFactory() {};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Creates analog device from joystick axes
|
||
|
* @param params contains parameters for creating the device:
|
||
|
* - "port": the nth gcpad on the adapter
|
||
|
* - "axis_x": the index of the axis to be bind as x-axis
|
||
|
* - "axis_y": the index of the axis to be bind as y-axis
|
||
|
*/
|
||
|
std::unique_ptr<Input::AnalogDevice> GCAnalogFactory::Create(const Common::ParamPackage& params) {
|
||
|
const std::string guid = params.Get("guid", "0");
|
||
|
const int port = params.Get("port", 0);
|
||
|
const int axis_x = params.Get("axis_x", 0);
|
||
|
const int axis_y = params.Get("axis_y", 1);
|
||
|
const float deadzone = std::clamp(params.Get("deadzone", 0.0f), 0.0f, .99f);
|
||
|
|
||
|
return std::make_unique<GCAnalog>(port, axis_x, axis_y, deadzone);
|
||
|
}
|
||
|
|
||
|
void GCAnalogFactory::BeginConfiguration() {
|
||
|
polling = true;
|
||
|
for (int i = 0; i < 4; i++)
|
||
|
pad_queue[i].Clear();
|
||
|
GCAdapter::BeginConfiguration();
|
||
|
}
|
||
|
|
||
|
void GCAnalogFactory::EndConfiguration() {
|
||
|
polling = false;
|
||
|
for (int i = 0; i < 4; i++)
|
||
|
pad_queue[i].Clear();
|
||
|
GCAdapter::EndConfiguration();
|
||
|
}
|
||
|
|
||
|
Common::ParamPackage GCAnalogFactory::GetNextInput() {
|
||
|
GCPadStatus pad;
|
||
|
for (int i = 0; i < 4; i++) {
|
||
|
while (pad_queue[i].Pop(pad)) {
|
||
|
if (pad.axis_which == 255 || std::abs((pad.axis_value - 128.0f) / 128.0f) < 0.1) {
|
||
|
continue;
|
||
|
}
|
||
|
// An analog device needs two axes, so we need to store the axis for later and wait for
|
||
|
// a second SDL event. The axes also must be from the same joystick.
|
||
|
const int axis = pad.axis_which;
|
||
|
if (analog_x_axis == -1) {
|
||
|
analog_x_axis = axis;
|
||
|
controller_number = i;
|
||
|
} else if (analog_y_axis == -1 && analog_x_axis != axis && controller_number == i) {
|
||
|
analog_y_axis = axis;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
Common::ParamPackage params;
|
||
|
if (analog_x_axis != -1 && analog_y_axis != -1) {
|
||
|
params.Set("engine", "gcpad");
|
||
|
params.Set("port", controller_number);
|
||
|
params.Set("axis_x", analog_x_axis);
|
||
|
params.Set("axis_y", analog_y_axis);
|
||
|
analog_x_axis = -1;
|
||
|
analog_y_axis = -1;
|
||
|
controller_number = -1;
|
||
|
return params;
|
||
|
}
|
||
|
return params;
|
||
|
}
|
||
|
} // namespace InputCommon
|