mes/module/sxml/xpath.scm
Jan Nieuwenhuizen 0bac0cb948 Use include-from-path for upstream.
* module/mes/lalr.scm: Rename from module/mes/lalr.upstream.mes.
* module/mes/lalr.mes: Update.
* module/mes/match.scm: Rename from module/mes/match.upstream.mes.
* module/mes/match.mes: Update.
* module/mes/optargs.scm: Rename from module/mes/optargs.upstream.mes.
* module/mes/optargs.mes: Update.
* module/mes/quasisyntax.scm: Rename from module/mes/quasisyntax.upstream.mes.
* module/mes/quasisyntax.mes: Update.
* module/srfi/srfi-1.scm: Rename from module/srfi/srfi-1.upstream.mes.
* module/srfi/srfi-1.mes: Update.
* module/srfi/srfi-9.scm: Rename from module/srfi/srfi-9.upstream.mes.
* module/srfi/srfi-9.mes: Update.
* AUTHORS: Update.
2016-12-22 19:34:41 +01:00

494 lines
19 KiB
Scheme
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

;;;; (sxml xpath) -- SXPath
;;;;
;;;; Copyright (C) 2009 Free Software Foundation, Inc.
;;;; Modified 2004 by Andy Wingo <wingo at pobox dot com>.
;;;; Written 2001 by Oleg Kiselyov <oleg at pobox dot com> SXPath.scm.
;;;;
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;;;
;;; Commentary:
;;
;;@heading SXPath: SXML Query Language
;;
;; SXPath is a query language for SXML, an instance of XML Information
;; set (Infoset) in the form of s-expressions. See @code{(sxml ssax)}
;; for the definition of SXML and more details. SXPath is also a
;; translation into Scheme of an XML Path Language,
;; @uref{http://www.w3.org/TR/xpath,XPath}. XPath and SXPath describe
;; means of selecting a set of Infoset's items or their properties.
;;
;; To facilitate queries, XPath maps the XML Infoset into an explicit
;; tree, and introduces important notions of a location path and a
;; current, context node. A location path denotes a selection of a set of
;; nodes relative to a context node. Any XPath tree has a distinguished,
;; root node -- which serves as the context node for absolute location
;; paths. Location path is recursively defined as a location step joined
;; with a location path. A location step is a simple query of the
;; database relative to a context node. A step may include expressions
;; that further filter the selected set. Each node in the resulting set
;; is used as a context node for the adjoining location path. The result
;; of the step is a union of the sets returned by the latter location
;; paths.
;;
;; The SXML representation of the XML Infoset (see SSAX.scm) is rather
;; suitable for querying as it is. Bowing to the XPath specification,
;; we will refer to SXML information items as 'Nodes':
;;@example
;; <Node> ::= <Element> | <attributes-coll> | <attrib>
;; | "text string" | <PI>
;;@end example
;; This production can also be described as
;;@example
;; <Node> ::= (name . <Nodeset>) | "text string"
;;@end example
;; An (ordered) set of nodes is just a list of the constituent nodes:
;;@example
;; <Nodeset> ::= (<Node> ...)
;;@end example
;; Nodesets, and Nodes other than text strings are both lists. A
;; <Nodeset> however is either an empty list, or a list whose head is not
;; a symbol. A symbol at the head of a node is either an XML name (in
;; which case it's a tag of an XML element), or an administrative name
;; such as '@@'. This uniform list representation makes processing rather
;; simple and elegant, while avoiding confusion. The multi-branch tree
;; structure formed by the mutually-recursive datatypes <Node> and
;; <Nodeset> lends itself well to processing by functional languages.
;;
;; A location path is in fact a composite query over an XPath tree or
;; its branch. A singe step is a combination of a projection, selection
;; or a transitive closure. Multiple steps are combined via join and
;; union operations. This insight allows us to @emph{elegantly}
;; implement XPath as a sequence of projection and filtering primitives
;; -- converters -- joined by @dfn{combinators}. Each converter takes a
;; node and returns a nodeset which is the result of the corresponding
;; query relative to that node. A converter can also be called on a set
;; of nodes. In that case it returns a union of the corresponding
;; queries over each node in the set. The union is easily implemented as
;; a list append operation as all nodes in a SXML tree are considered
;; distinct, by XPath conventions. We also preserve the order of the
;; members in the union. Query combinators are high-order functions:
;; they take converter(s) (which is a Node|Nodeset -> Nodeset function)
;; and compose or otherwise combine them. We will be concerned with only
;; relative location paths [XPath]: an absolute location path is a
;; relative path applied to the root node.
;;
;; Similarly to XPath, SXPath defines full and abbreviated notations
;; for location paths. In both cases, the abbreviated notation can be
;; mechanically expanded into the full form by simple rewriting
;; rules. In case of SXPath the corresponding rules are given as
;; comments to a sxpath function, below. The regression test suite at
;; the end of this file shows a representative sample of SXPaths in
;; both notations, juxtaposed with the corresponding XPath
;; expressions. Most of the samples are borrowed literally from the
;; XPath specification, while the others are adjusted for our running
;; example, tree1.
;;
;;; Code:
(define-module (sxml xpath)
#:use-module (ice-9 pretty-print)
#:export (nodeset? node-typeof? node-eq? node-equal? node-pos
filter take-until take-after map-union node-reverse
node-trace select-kids node-self node-join node-reduce
node-or node-closure node-parent
sxpath))
;; Upstream version:
; $Id: SXPath.scm,v 3.5 2001/01/12 23:20:35 oleg Exp oleg $
(define (nodeset? x)
(or (and (pair? x) (not (symbol? (car x)))) (null? x)))
;-------------------------
; Basic converters and applicators
; A converter is a function
; type Converter = Node|Nodeset -> Nodeset
; A converter can also play a role of a predicate: in that case, if a
; converter, applied to a node or a nodeset, yields a non-empty
; nodeset, the converter-predicate is deemed satisfied. Throughout
; this file a nil nodeset is equivalent to #f in denoting a failure.
; The following function implements a 'Node test' as defined in
; Sec. 2.3 of XPath document. A node test is one of the components of a
; location step. It is also a converter-predicate in SXPath.
;
; The function node-typeof? takes a type criterion and returns a function,
; which, when applied to a node, will tell if the node satisfies
; the test.
; node-typeof? :: Crit -> Node -> Boolean
;
; The criterion 'crit' is a symbol, one of the following:
; id - tests if the Node has the right name (id)
; @ - tests if the Node is an <attributes-coll>
; * - tests if the Node is an <Element>
; *text* - tests if the Node is a text node
; *PI* - tests if the Node is a PI node
; *any* - #t for any type of Node
(define (node-typeof? crit)
(lambda (node)
(case crit
((*) (and (pair? node) (not (memq (car node) '(@ *PI*)))))
((*any*) #t)
((*text*) (string? node))
(else
(and (pair? node) (eq? crit (car node))))
)))
; Curried equivalence converter-predicates
(define (node-eq? other)
(lambda (node)
(eq? other node)))
(define (node-equal? other)
(lambda (node)
(equal? other node)))
; node-pos:: N -> Nodeset -> Nodeset, or
; node-pos:: N -> Converter
; Select the N'th element of a Nodeset and return as a singular Nodeset;
; Return an empty nodeset if the Nth element does not exist.
; ((node-pos 1) Nodeset) selects the node at the head of the Nodeset,
; if exists; ((node-pos 2) Nodeset) selects the Node after that, if
; exists.
; N can also be a negative number: in that case the node is picked from
; the tail of the list.
; ((node-pos -1) Nodeset) selects the last node of a non-empty nodeset;
; ((node-pos -2) Nodeset) selects the last but one node, if exists.
(define (node-pos n)
(lambda (nodeset)
(cond
((not (nodeset? nodeset)) '())
((null? nodeset) nodeset)
((eqv? n 1) (list (car nodeset)))
((negative? n) ((node-pos (+ n 1 (length nodeset))) nodeset))
(else
(or (positive? n) (error "yikes!"))
((node-pos (1- n)) (cdr nodeset))))))
; filter:: Converter -> Converter
; A filter applicator, which introduces a filtering context. The argument
; converter is considered a predicate, with either #f or nil result meaning
; failure.
(define (filter pred?)
(lambda (lst) ; a nodeset or a node (will be converted to a singleton nset)
(let loop ((lst (if (nodeset? lst) lst (list lst))) (res '()))
(if (null? lst)
(reverse res)
(let ((pred-result (pred? (car lst))))
(loop (cdr lst)
(if (and pred-result (not (null? pred-result)))
(cons (car lst) res)
res)))))))
; take-until:: Converter -> Converter, or
; take-until:: Pred -> Node|Nodeset -> Nodeset
; Given a converter-predicate and a nodeset, apply the predicate to
; each element of the nodeset, until the predicate yields anything but #f or
; nil. Return the elements of the input nodeset that have been processed
; till that moment (that is, which fail the predicate).
; take-until is a variation of the filter above: take-until passes
; elements of an ordered input set till (but not including) the first
; element that satisfies the predicate.
; The nodeset returned by ((take-until (not pred)) nset) is a subset --
; to be more precise, a prefix -- of the nodeset returned by
; ((filter pred) nset)
(define (take-until pred?)
(lambda (lst) ; a nodeset or a node (will be converted to a singleton nset)
(let loop ((lst (if (nodeset? lst) lst (list lst))))
(if (null? lst) lst
(let ((pred-result (pred? (car lst))))
(if (and pred-result (not (null? pred-result)))
'()
(cons (car lst) (loop (cdr lst)))))
))))
; take-after:: Converter -> Converter, or
; take-after:: Pred -> Node|Nodeset -> Nodeset
; Given a converter-predicate and a nodeset, apply the predicate to
; each element of the nodeset, until the predicate yields anything but #f or
; nil. Return the elements of the input nodeset that have not been processed:
; that is, return the elements of the input nodeset that follow the first
; element that satisfied the predicate.
; take-after along with take-until partition an input nodeset into three
; parts: the first element that satisfies a predicate, all preceding
; elements and all following elements.
(define (take-after pred?)
(lambda (lst) ; a nodeset or a node (will be converted to a singleton nset)
(let loop ((lst (if (nodeset? lst) lst (list lst))))
(if (null? lst) lst
(let ((pred-result (pred? (car lst))))
(if (and pred-result (not (null? pred-result)))
(cdr lst)
(loop (cdr lst))))
))))
; Apply proc to each element of lst and return the list of results.
; if proc returns a nodeset, splice it into the result
;
; From another point of view, map-union is a function Converter->Converter,
; which places an argument-converter in a joining context.
(define (map-union proc lst)
(if (null? lst) lst
(let ((proc-res (proc (car lst))))
((if (nodeset? proc-res) append cons)
proc-res (map-union proc (cdr lst))))))
; node-reverse :: Converter, or
; node-reverse:: Node|Nodeset -> Nodeset
; Reverses the order of nodes in the nodeset
; This basic converter is needed to implement a reverse document order
; (see the XPath Recommendation).
(define node-reverse
(lambda (node-or-nodeset)
(if (not (nodeset? node-or-nodeset)) (list node-or-nodeset)
(reverse node-or-nodeset))))
; node-trace:: String -> Converter
; (node-trace title) is an identity converter. In addition it prints out
; a node or nodeset it is applied to, prefixed with the 'title'.
; This converter is very useful for debugging.
(define (node-trace title)
(lambda (node-or-nodeset)
(display "\n-->")
(display title)
(display " :")
(pretty-print node-or-nodeset)
node-or-nodeset))
;-------------------------
; Converter combinators
;
; Combinators are higher-order functions that transmogrify a converter
; or glue a sequence of converters into a single, non-trivial
; converter. The goal is to arrive at converters that correspond to
; XPath location paths.
;
; From a different point of view, a combinator is a fixed, named
; _pattern_ of applying converters. Given below is a complete set of
; such patterns that together implement XPath location path
; specification. As it turns out, all these combinators can be built
; from a small number of basic blocks: regular functional composition,
; map-union and filter applicators, and the nodeset union.
; select-kids:: Pred -> Node -> Nodeset
; Given a Node, return an (ordered) subset its children that satisfy
; the Pred (a converter, actually)
; select-kids:: Pred -> Nodeset -> Nodeset
; The same as above, but select among children of all the nodes in
; the Nodeset
;
; More succinctly, the signature of this function is
; select-kids:: Converter -> Converter
(define (select-kids test-pred?)
(lambda (node) ; node or node-set
(cond
((null? node) node)
((not (pair? node)) '()) ; No children
((symbol? (car node))
((filter test-pred?) (cdr node))) ; it's a single node
(else (map-union (select-kids test-pred?) node)))))
; node-self:: Pred -> Node -> Nodeset, or
; node-self:: Converter -> Converter
; Similar to select-kids but apply to the Node itself rather
; than to its children. The resulting Nodeset will contain either one
; component, or will be empty (if the Node failed the Pred).
(define node-self filter)
; node-join:: [LocPath] -> Node|Nodeset -> Nodeset, or
; node-join:: [Converter] -> Converter
; join the sequence of location steps or paths as described
; in the title comments above.
(define (node-join . selectors)
(lambda (nodeset) ; Nodeset or node
(let loop ((nodeset nodeset) (selectors selectors))
(if (null? selectors) nodeset
(loop
(if (nodeset? nodeset)
(map-union (car selectors) nodeset)
((car selectors) nodeset))
(cdr selectors))))))
; node-reduce:: [LocPath] -> Node|Nodeset -> Nodeset, or
; node-reduce:: [Converter] -> Converter
; A regular functional composition of converters.
; From a different point of view,
; ((apply node-reduce converters) nodeset)
; is equivalent to
; (foldl apply nodeset converters)
; i.e., folding, or reducing, a list of converters with the nodeset
; as a seed.
(define (node-reduce . converters)
(lambda (nodeset) ; Nodeset or node
(let loop ((nodeset nodeset) (converters converters))
(if (null? converters) nodeset
(loop ((car converters) nodeset) (cdr converters))))))
; node-or:: [Converter] -> Converter
; This combinator applies all converters to a given node and
; produces the union of their results.
; This combinator corresponds to a union, '|' operation for XPath
; location paths.
; (define (node-or . converters)
; (lambda (node-or-nodeset)
; (if (null? converters) node-or-nodeset
; (append
; ((car converters) node-or-nodeset)
; ((apply node-or (cdr converters)) node-or-nodeset)))))
; More optimal implementation follows
(define (node-or . converters)
(lambda (node-or-nodeset)
(let loop ((result '()) (converters converters))
(if (null? converters) result
(loop (append result (or ((car converters) node-or-nodeset) '()))
(cdr converters))))))
; node-closure:: Converter -> Converter
; Select all _descendants_ of a node that satisfy a converter-predicate.
; This combinator is similar to select-kids but applies to
; grand... children as well.
; This combinator implements the "descendant::" XPath axis
; Conceptually, this combinator can be expressed as
; (define (node-closure f)
; (node-or
; (select-kids f)
; (node-reduce (select-kids (node-typeof? '*)) (node-closure f))))
; This definition, as written, looks somewhat like a fixpoint, and it
; will run forever. It is obvious however that sooner or later
; (select-kids (node-typeof? '*)) will return an empty nodeset. At
; this point further iterations will no longer affect the result and
; can be stopped.
(define (node-closure test-pred?)
(lambda (node) ; Nodeset or node
(let loop ((parent node) (result '()))
(if (null? parent) result
(loop ((select-kids (node-typeof? '*)) parent)
(append result
((select-kids test-pred?) parent)))
))))
; node-parent:: RootNode -> Converter
; (node-parent rootnode) yields a converter that returns a parent of a
; node it is applied to. If applied to a nodeset, it returns the list
; of parents of nodes in the nodeset. The rootnode does not have
; to be the root node of the whole SXML tree -- it may be a root node
; of a branch of interest.
; Given the notation of Philip Wadler's paper on semantics of XSLT,
; parent(x) = { y | y=subnode*(root), x=subnode(y) }
; Therefore, node-parent is not the fundamental converter: it can be
; expressed through the existing ones. Yet node-parent is a rather
; convenient converter. It corresponds to a parent:: axis of SXPath.
; Note that the parent:: axis can be used with an attribute node as well!
(define (node-parent rootnode)
(lambda (node) ; Nodeset or node
(if (nodeset? node) (map-union (node-parent rootnode) node)
(let ((pred
(node-or
(node-reduce
(node-self (node-typeof? '*))
(select-kids (node-eq? node)))
(node-join
(select-kids (node-typeof? '@))
(select-kids (node-eq? node))))))
((node-or
(node-self pred)
(node-closure pred))
rootnode)))))
;-------------------------
; Evaluate an abbreviated SXPath
; sxpath:: AbbrPath -> Converter, or
; sxpath:: AbbrPath -> Node|Nodeset -> Nodeset
; AbbrPath is a list. It is translated to the full SXPath according
; to the following rewriting rules
; (sxpath '()) -> (node-join)
; (sxpath '(path-component ...)) ->
; (node-join (sxpath1 path-component) (sxpath '(...)))
; (sxpath1 '//) -> (node-or
; (node-self (node-typeof? '*any*))
; (node-closure (node-typeof? '*any*)))
; (sxpath1 '(equal? x)) -> (select-kids (node-equal? x))
; (sxpath1 '(eq? x)) -> (select-kids (node-eq? x))
; (sxpath1 ?symbol) -> (select-kids (node-typeof? ?symbol)
; (sxpath1 procedure) -> procedure
; (sxpath1 '(?symbol ...)) -> (sxpath1 '((?symbol) ...))
; (sxpath1 '(path reducer ...)) ->
; (node-reduce (sxpath path) (sxpathr reducer) ...)
; (sxpathr number) -> (node-pos number)
; (sxpathr path-filter) -> (filter (sxpath path-filter))
(define (sxpath path)
(lambda (nodeset)
(let loop ((nodeset nodeset) (path path))
(cond
((null? path) nodeset)
((nodeset? nodeset)
(map-union (sxpath path) nodeset))
((procedure? (car path))
(loop ((car path) nodeset) (cdr path)))
((eq? '// (car path))
(loop
((if (nodeset? nodeset) append cons) nodeset
((node-closure (node-typeof? '*any*)) nodeset))
(cdr path)))
((symbol? (car path))
(loop ((select-kids (node-typeof? (car path))) nodeset)
(cdr path)))
((and (pair? (car path)) (eq? 'equal? (caar path)))
(loop ((select-kids (apply node-equal? (cdar path))) nodeset)
(cdr path)))
((and (pair? (car path)) (eq? 'eq? (caar path)))
(loop ((select-kids (apply node-eq? (cdar path))) nodeset)
(cdr path)))
((pair? (car path))
(let reducer ((nodeset
(if (symbol? (caar path))
((select-kids (node-typeof? (caar path))) nodeset)
(loop nodeset (caar path))))
(reducing-path (cdar path)))
(cond
((null? reducing-path) (loop nodeset (cdr path)))
((number? (car reducing-path))
(reducer ((node-pos (car reducing-path)) nodeset)
(cdr reducing-path)))
(else
(reducer ((filter (sxpath (car reducing-path))) nodeset)
(cdr reducing-path))))))
(else
(error "Invalid path step: " (car path)))))))
;;; arch-tag: c4e57abf-6b61-4612-a6aa-d1536d440774
;;; xpath.scm ends here