mes/module/nyacc/parse.scm
Jan Nieuwenhuizen a53e09d3e8 Import Nyacc 0.72.0.
* module/nyacc: Import module/nyacc.
2016-12-17 22:34:43 +01:00

226 lines
8.5 KiB
Scheme

;;; nyacc/parse.scm
;;;
;;; Copyright (C) 2014-2016 Matthew R. Wette
;;;
;;; This library is free software; you can redistribute it and/or
;;; modify it under the terms of the GNU Lesser General Public
;;; License as published by the Free Software Foundation; either
;;; version 3 of the License, or (at your option) any later version.
;;;
;;; This library is distributed in the hope that it will be useful,
;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;; Lesser General Public License for more details.
;;;
;;; You should have received a copy of the GNU Lesser General Public
;;; License along with this library; if not, write to the Free Software
;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;; make parser that provide list of la-toks to lexer:
;; e.g., if comment not in latok, just throw away
(define-module (nyacc parse)
#:export (make-lalr-parser
make-lalr-ia-parser
)
#:use-module (nyacc util)
#:use-module ((srfi srfi-43) #:select (vector-map vector-for-each))
)
;; @item (machine-hashed? mach) => #t|#f
;; Indicate if the machine has been hashed.
(define (machine-hashed? mach)
(number? (caar (vector-ref (assq-ref mach 'pat-v) 0))))
;; @item make-lalr-parser mach => parser
;; This generates a procedure that takes one argument, a lexical analyzer:
;; @example
;; (parser lexical-analyzer [#:debug #t])
;; @end example
;; and is used as
;; @example
;; (define xyz-parse (make-lalr-parser xyz-mach))
;; (with-input-from-file "sourcefile.xyz" (lambda () (xyz-parse (gen-lexer))))
;; @end example
;; The generated parser is reentrant.
(define* (make-lalr-parser mach)
(let* ((len-v (assq-ref mach 'len-v))
(rto-v (assq-ref mach 'rto-v)) ; reduce to
(pat-v (assq-ref mach 'pat-v))
(actn-v (assq-ref mach 'act-v)) ; unknown action vector
(mtab (assq-ref mach 'mtab))
(xact-v (if (procedure? (vector-ref actn-v 0)) actn-v
(vector-map
;; Turn symbolic action into executable procedures:
(lambda (ix f) (eval f (current-module)))
(vector-map
(lambda (ix actn) (wrap-action actn))
actn-v))))
;;
(dmsg (lambda (s t a) (fmtout "state ~S, token ~S\t=> ~S\n" s t a)))
(hashed (number? (caar (vector-ref pat-v 0)))) ; been hashified?
;;(def (assq-ref mtab '$default))
(def (if hashed -1 '$default))
(end (assq-ref mtab '$end))
(err (assq-ref mtab '$error))
(comm (list (assq-ref mtab '$lone-comm) (assq-ref mtab '$code-comm)))
;; predicate to test for shift action:
(shift? (if hashed
(lambda (a) (positive? a))
(lambda (a) (eq? 'shift (car a)))))
;; On shift, transition to this state:
(shift-to (if hashed (lambda (x) x) (lambda (x) (cdr x))))
;; Predicate to test for reduce action:
(reduce? (if hashed
(lambda (a) (negative? a))
(lambda (a) (eq? 'reduce (car a)))))
;; On reduce, reduce this production-rule:
(reduce-pr (if hashed abs cdr))
;; If error, make the right packet.
(other (if hashed 0 '(other . 0)))
)
(lambda* (lexr #:key debug)
(let iter ((state (list 0)) ; state stack
(stack (list '$@)) ; sval stack
(nval #f) ; prev reduce to non-term val
(lval (lexr))) ; lexical value (from lex'er)
(let* ((tval (car (if nval nval lval))) ; token (syntax value)
(sval (cdr (if nval nval lval))) ; semantic value
(stxl (vector-ref pat-v (car state))) ; state transition xtra
(oact #f) ;; if not shift/reduce, then accept, error or skip
(stx (cond ;; state transition
((assq-ref stxl tval)) ; shift/reduce in table
((memq tval comm) (set! oact 'skip) other)
((assq-ref stxl err)) ; error recovery
((assq-ref stxl def)) ; default action
(else (set! oact 'error) other))))
(if debug (dmsg (car state) (if nval tval sval) stx))
(cond
((shift? stx)
;; We could check here to determine if next transition only has a
;; default reduction and, if so, go ahead and process the reduction
;; without reading another input token. Needed for interactive.
(iter (cons (shift-to stx) state) (cons sval stack)
#f (if nval lval (lexr))))
((reduce? stx)
(let* ((gx (reduce-pr stx)) (gl (vector-ref len-v gx))
($$ (apply (vector-ref xact-v gx) stack)))
(iter (list-tail state gl)
(list-tail stack gl)
(cons (vector-ref rto-v gx) $$)
lval)))
(else ;; other action: skip, error, or accept
(case oact
((skip) (iter state stack nval (lexr)))
((error)
(let ((fn (or (port-filename (current-input-port)) "(unknown)"))
(ln (1+ (port-line (current-input-port)))))
(fmterr "~A:~A: parse failed at state ~A, on input ~S\n"
fn ln (car state) sval)
#f))
(else ;; accept
(car stack))))))))))
;; @item make-lalr-ia-parser mach
;; Make an interactive parser. This will automatically process default
;; redunctions if that is the only choice, and does not wait for '$end to
;; return. This needs algorithm verification. Makes some assumptions that
;; need to be verified.
(define* (make-lalr-ia-parser mach)
(let* ((len-v (assq-ref mach 'len-v))
(rto-v (assq-ref mach 'rto-v)) ; reduce to
(pat-v (assq-ref mach 'pat-v))
(actn-v (assq-ref mach 'act-v)) ; unknown action vector
(mtab (assq-ref mach 'mtab))
(xact-v (if (procedure? (vector-ref actn-v 0)) actn-v
(vector-map
;; Turn symbolic action into executable procedures:
(lambda (ix f) (eval f (current-module)))
(vector-map
(lambda (ix actn) (wrap-action actn))
actn-v))))
;;
(dmsg (lambda (s t a) (fmtout "state ~S, token ~S\t=> ~S\n" s t a)))
(hashed (number? (caar (vector-ref pat-v 0)))) ; been hashified?
;;(def (assq-ref (assq-ref mach 'mtab) '$default))
(def (if hashed -1 '$default))
(end (assq-ref mtab '$end))
;; predicate to test for shift action:
(shift? (if hashed
(lambda (a) (positive? a))
(lambda (a) (eq? 'shift (car a)))))
;; On shift, transition to this state:
(shift-to (if hashed (lambda (x) x) (lambda (x) (cdr x))))
;; predicate to test for reduce action:
(reduce? (if hashed
(lambda (a) (negative? a))
(lambda (a) (eq? 'reduce (car a)))))
;; On reduce, reduce this production-rule:
;;(reduce-pr (if hashed (lambda (a) (abs a)) (lambda (a) (cdr a))))
(reduce-pr (if hashed abs cdr))
;; If no action found in transition list, then this:
(parse-error (if hashed #f (cons 'error 0)))
;; predicate to test for error
(error? (if hashed
(lambda (a) (eq? #f a))
(lambda (a) (eq? 'error (car a)))))
)
(lambda* (lexr #:key debug)
(let iter ((state (list 0)) ; state stack
(stack (list '$@)) ; sval stack
(nval #f) ; prev reduce to non-term val
(lval #f)) ; lexical value (from lex'er)
(let ((stxl (vector-ref pat-v (car state))))
(cond
((eqv? def (caar stxl))
(let* ((stx (cdar stxl))
(gx (reduce-pr stx))
(gl (vector-ref len-v gx))
($$ (apply (vector-ref xact-v gx) stack)))
(if debug (fmtout "state ~S, default => reduce ~S, goto ~S\n"
(car state) gx (list-ref state gl)))
(iter (list-tail state gl) (list-tail stack gl)
(cons (vector-ref rto-v gx) $$) lval)))
((eqv? end (caar stxl)) ; only '$end remains, return for i/a
(if debug (fmtout "in state ~S, looking at '$end => accept\n"
(car state)))
(if (reduce? (cdar stxl))
;; Assuming this is the final reduction ...
(apply (vector-ref xact-v (reduce-pr (cdar stxl))) stack)
;; Or already done ...
(car stack)))
(else
(let* ((laval (or nval (or lval (lexr))))
(tval (car laval)) (sval (cdr laval))
(stx (or (assq-ref stxl tval)
(assq-ref stxl def)
parse-error)))
#;(if debug (fmtout " lval=~S laval=~S\n" lval laval))
(if debug (dmsg (car state) (if nval tval sval) stx))
(cond
((error? stx)
(let ((fn (or (port-filename (current-input-port)) "(???)"))
(ln (1+ (port-line (current-input-port)))))
(fmterr "~A:~A: parse failed at state ~A, on input ~S\n"
fn ln (car state) sval))
#f)
((shift? stx)
(iter (cons (shift-to stx) state) (cons sval stack)
#f (if nval lval #f)))
((reduce? stx)
(let* ((gx (reduce-pr stx)) (gl (vector-ref len-v gx))
($$ (apply (vector-ref xact-v gx) stack)))
(iter (list-tail state gl)
(list-tail stack gl)
(cons (vector-ref rto-v gx) $$)
(if nval lval laval)
)))
(else ;; accept
(car stack)))))))))))
;; @end itemize
;;; --- last line ---