mes/module/mes/scm.mes
Jan Nieuwenhuizen 51cd4885fc Add string-copy, string=, string=?, char<?, char>?, char<=?, char>=?.
* module/srfi/srfi-13.mes: New file.
* module/mes/scm.mes (char<?, char>?, char<=?, char>=?): New function.
* module/srfi/srfi-13.mes: New file.
* tests/srfi-13.test: New file.
* string.c (string_to_symbol): Handle "".
2016-12-11 21:26:27 +01:00

291 lines
7.7 KiB
Scheme

;;; -*-scheme-*-
;;; Mes --- Maxwell Equations of Software
;;; Copyright © 2016 Jan Nieuwenhuizen <janneke@gnu.org>
;;;
;;; This file is part of Mes.
;;;
;;; Mes is free software; you can redistribute it and/or modify it
;;; under the terms of the GNU General Public License as published by
;;; the Free Software Foundation; either version 3 of the License, or (at
;;; your option) any later version.
;;;
;;; Mes is distributed in the hope that it will be useful, but
;;; WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;;; GNU General Public License for more details.
;;;
;;; You should have received a copy of the GNU General Public License
;;; along with Mes. If not, see <http://www.gnu.org/licenses/>.
;;; Commentary:
;;; scm.mes is loaded after base, quasiquote and let. It provides
;;; basic Scheme functions bringing Mes close to basic RRS Scheme (no
;;; labels, processes, fluids or throw/catch).
;;; Code:
(mes-use-module (mes let))
(define (cadddr x) (car (cdddr x)))
(define (list . rest) rest)
(define (list-head x n)
(if (= 0 n) '()
(cons (car x) (list-head (cdr x) (- n 1)))))
(define (list-tail x n)
(if (= 0 n) x
(list-tail (cdr x) (- n 1))))
(define (string-prefix? prefix string)
(and
(>= (string-length string) (string-length prefix))
(equal? (substring string 0 (string-length prefix)) prefix)))
(define (symbol-prefix? prefix symbol)
(string-prefix? (symbol->string prefix) (symbol->string symbol)))
(define (symbol-append . rest)
(string->symbol (apply string-append (map symbol->string rest))))
(define-macro (case val . args)
(if (null? args) #f
(let ((clause (car args)))
(let ((pred (car clause)))
(let ((body (cdr clause)))
(if (pair? pred) `(if ,(if (null? (cdr pred))
`(eq? ,val ',(car pred))
`(member ,val ',pred))
(begin ,@body)
(case ,val ,@(cdr args)))
`(begin ,@body)))))))
(define-macro (when expr . body)
`(if ,expr
((lambda () ,@body))))
(define-macro (unless expr . body)
`(if (not ,expr)
((lambda () ,@body))))
(define-macro (do init test . body)
`(let loop ((,(caar init) ,(cadar init)))
(when (not ,@test)
,@body
(loop ,@(cddar init)))))
(define integer? number?)
(define (make-list n . x)
(let ((fill (if (pair? x) (car x) *unspecified*)))
(let loop ((n n))
(if (= 0 n) '()
(cons fill (loop (- n 1)))))))
(define (string->list s)
(let ((n (string-length s)))
(let loop ((i 0))
(if (= i n) '()
(cons (string-ref s i) (loop (+ i 1)))))))
(define (string->number s . radix)
(if (and (pair? radix) (not (= (car radix) 10))) '*STRING->NUMBER:RADIX-NOT-SUPPORTED
(let* ((lst (string->list s))
(sign (if (char=? (car lst) #\-) -1 1))
(lst (if (= sign -1) (cdr lst) lst)))
(let loop ((lst lst) (n 0))
(if (null? lst) (* sign n)
(loop (cdr lst) (+ (* n 10) (- (char->integer (car lst)) (char->integer #\0)))))))))
(define (char<? a b) (< (char->integer a) (char->integer b)))
(define (char>? a b) (> (char->integer a) (char->integer b)))
(define (char<=? a b) (<= (char->integer a) (char->integer b)))
(define (char>=? a b) (>= (char->integer a) (char->integer b)))
(define (vector . rest) (list->vector rest))
(define c:make-vector make-vector)
(define (make-vector n . x)
(if (null? x) (c:make-vector n)
(list->vector (apply make-list (cons n x)))))
(define (acons key value alist)
(cons (cons key value) alist))
(define (assq-set! alist key val)
(let ((entry (assq key alist)))
(cond (entry (set-cdr! entry val)
alist)
(#t (cons (cons key val) alist)))))
(define (assq-ref alist key)
(let ((entry (assq key alist)))
(if entry (cdr entry)
#f)))
(define assv assq)
(define assv-ref assq-ref)
(define (assoc key alist)
(if (null? alist) #f ;; IF
(if (equal? key (caar alist)) (car alist)
(assoc key (cdr alist)))))
(define (assoc-ref alist key)
(let ((entry (assoc key alist)))
(if entry (cdr entry)
#f)))
(define (memq x lst)
(if (null? lst) #f ;; IF
(if (eq? x (car lst)) lst
(memq x (cdr lst)))))
(define memv memq)
(define (member x lst)
(if (null? lst) #f ;; IF
(if (equal? x (car lst)) lst
(member x (cdr lst)))))
(define (for-each f l . r)
(if (pair? l) (if (null? r) (begin (f (car l)) (for-each f (cdr l)))
(if (null? (cdr r)) (begin (f (car l) (caar r)) (for-each f (cdr l) (cdar r)))))))
(define (<= . rest)
(or (apply < rest)
(apply = rest)))
(define (>= . rest)
(or (apply > rest)
(apply = rest)))
;; (define (>= . rest)
;; (if (apply > rest) #t
;; (if (apply = rest) #t
;; #f)))
(define (remainder x y)
(- x (* (quotient x y) y)))
(define (even? x)
(= 0 (remainder x 2)))
(define (odd? x)
(= 1 (remainder x 2)))
(define (negative? x)
(< x 0))
(define (positive? x)
(> x 0))
(define (zero? x)
(= x 0))
(define (1+ x)
(+ x 1))
(define (1- x)
(- x 1))
(define (abs x)
(if (>= x 0) x (- x)))
(define (expt x y)
(let loop ((s 1) (count y))
(if (= 0 count) s
(loop (* s x) (- count 1)))))
(define (max x . rest)
(if (null? rest) x
(let ((y (car rest)))
(let ((z (if (> x y) x y)))
(apply max (cons z (cdr rest)))))))
(define (min x . rest)
(if (null? rest) x
(let ((y (car rest)))
(let ((z (if (< x y) x y)))
(apply min (cons z (cdr rest)))))))
(define gensym
(let ((counter 0))
(lambda (. rest)
(let ((value (number->string counter)))
(set! counter (+ counter 1))
(string->symbol (string-append "g" value))))))
(define else #t)
(define (error who . rest)
(display "error:" (current-error-port))
(display who (current-error-port))
(display ":" (current-error-port))
(display rest (current-error-port))
(newline (current-error-port))
(display "exiting...\n" (current-error-port))
(exit 1))
(define (syntax-error message . rest)
(display "syntax-error:" (current-error-port))
(display message (current-error-port))
(display ":" (current-error-port))
(display rest (current-error-port))
(newline (current-error-port)))
(define (list-ref lst k)
(let loop ((lst lst) (k k))
(if (= 0 k) (car lst)
(loop (cdr lst) (- k 1)))))
(define (iota n)
(if (<= n 0) '()
(append2 (iota (- n 1)) (list (- n 1)))))
;; srfi-1
(define (last-pair lst)
(let loop ((lst lst))
(if (or (null? lst) (null? (cdr lst))) lst
(loop (cdr lst)))))
(define (reverse lst)
(if (null? lst) '()
(append (reverse (cdr lst)) (cons (car lst) '()))))
(define (filter pred lst)
(let loop ((lst lst))
(if (null? lst) '()
(if (pred (car lst))
(cons (car lst) (loop (cdr lst)))
(loop (cdr lst))))))
(define (delete x lst)
(filter (lambda (e) (not (equal? e x))) lst))
(define (delq x lst)
(filter (lambda (e) (not (eq? e x))) lst))
(define (vector-copy x)
(list->vector (vector->list x)))
(define (eof-object? x)
(or (and (number? x) (= x -1))
(and (char? x) (eof-object? (char->integer x)))))
(define (char=? x y)
(and (char? x) (char? y)
(eq? x y)))
(define (char-alphabetic? x)
(and (char? x)
(let ((i (char->integer x)))
(or (and (>= i (char->integer #\A)) (<= i (char->integer #\Z)))
(and (>= i (char->integer #\a)) (<= i (char->integer #\z)))))))
(define (char-numeric? x)
(and (char? x)
(let ((i (char->integer x)))
(and (>= i (char->integer #\0)) (<= i (char->integer #\9))))))