;;; -*-scheme-*- ;;; Mes --- Maxwell Equations of Software ;;; Copyright © 2016 Jan Nieuwenhuizen ;;; ;;; scm.mes: This file is part of Mes. ;;; ;;; Mes is free software; you can redistribute it and/or modify it ;;; under the terms of the GNU General Public License as published by ;;; the Free Software Foundation; either version 3 of the License, or (at ;;; your option) any later version. ;;; ;;; Mes is distributed in the hope that it will be useful, but ;;; WITHOUT ANY WARRANTY; without even the implied warranty of ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;;; GNU General Public License for more details. ;;; ;;; You should have received a copy of the GNU General Public License ;;; along with Mes. If not, see . (define (list . rest) rest) (define-macro (if expr then . else) `(cond (,expr ,then) (#t (cond (,(pair? else) ((lambda () ,@else))))))) (define-macro (case val . args) (if (null? args) #f (let* ((clause (car args)) (pred (car clause)) (body (cdr clause))) (if (pair? pred) `(if ,(if (null? (cdr pred)) `(eq? ,val ',(car pred)) `(member ,val ',pred)) (begin ,@body) (case ,val ,@(cdr args))) `(begin ,@body))))) (define-macro (when expr . body) `(if ,expr ((lambda () ,@body)))) (define-macro (do init test . body) `(let loop ((,(caar init) ,(cadar init))) (when (not ,@test) ,@body (loop ,@(cddar init))))) (define (procedure? p) (cond ((builtin? p) #t) ((and (pair? p) (eq? (car p) 'lambda))) ((and (pair? p) (eq? (car p) '*closure*))) (#t #f))) (define integer? number?) (define (equal? a b) ;; FIXME: only 2 arg (cond ((and (null? a) (null? b)) #t) ((and (pair? a) (pair? b)) (and (equal? (car a) (car b)) (equal? (cdr a) (cdr b)))) ((and (string? a) (string? b)) (eq? (string->symbol a) (string->symbol b))) ((and (vector? a) (vector? b)) (equal? (vector->list a) (vector->list b))) (#t (eq? a b)))) (define (vector . rest) (list->vector rest)) (define (make-vector n . x) (let ((fill (if (pair? x) (car x) *unspecified*))) (list->vector (let loop ((n n)) (if (= 0 n) '() (cons fill (loop (- n 1)))))))) (define (assq-set! alist key val) (let ((entry (assq key alist))) (cond (entry (set-cdr! entry val) alist) (#t (cons (cons key val) alist))))) (define (assq-ref alist key) (let ((entry (assq key alist))) (if entry (cdr entry) #f))) (define assv assq) (define assv-ref assq-ref) (define (assoc key alist) (cond ((null? alist) #f) ((equal? key (caar alist)) (car alist)) (#t (assoc key (cdr alist))))) (define (assoc-ref alist key) (let ((entry (assoc key alist))) (if entry (cdr entry) #f))) (define (memq x lst) (cond ((null? lst) #f) ((eq? x (car lst)) lst) (#t (memq x (cdr lst))))) (define memv memq) (define (member x lst) (cond ((null? lst) #f) ((equal? x (car lst)) lst) (#t (member x (cdr lst))))) (define (map f l . r) (cond ((null? l) '()) ((null? r) (cons (f (car l)) (map f (cdr l)))) ((null? (cdr r)) (cons (f (car l) (caar r)) (map f (cdr l) (cdar r)))))) (define (identity x) x) (define (for-each f l . r) (cond ((null? l) '()) ((null? r) (f (car l)) (for-each f (cdr l))) ((null? (cdr r)) (for-each f (cdr l) (cdar r))))) (define (not x) (cond (x #f) (#t #t))) (define (<= . rest) (or (apply < rest) (apply = rest))) (define (>= . rest) (or (apply > rest) (apply = rest))) (define quotient /) (define (remainder x y) (- x (* (/ x y) y))) (define (expt x y) (let loop ((s 1) (count y)) (if (= 0 count) s (loop (* s x) (- count 1))))) (define (max x . rest) (if (null? rest) x (let* ((y (car rest)) (z (if (> x y) x y))) (apply max (cons z (cdr rest)))))) (define (min x . rest) (if (null? rest) x (let* ((y (car rest)) (z (if (< x y) x y))) (apply min (cons z (cdr rest)))))) (define (list? x) (or (null? x) (and (pair? x) (list? (cdr x))))) (define gensym (let ((counter 0)) (lambda (. rest) (let ((value (number->string counter))) (set! counter (+ counter 1)) (string->symbol (string-append "g" value)))))) (define else #t) (define (error who . rest) (display "error:") (display who) (display ":") (display rest) (display newline)) (define (syntax-error message . rest) (display "syntax-error:") (display message) (display ":") (display rest) (newline)) (define (list-ref lst k) (let loop ((lst lst) (k k)) (if (= 0 k) (car lst) (loop (cdr lst) (- k 1))))) ;; srfi-1 (define (last-pair lst) (let loop ((lst lst)) (if (or (null? lst) (null? (cdr lst))) lst (loop (cdr lst))))) (define (reverse lst) (if (null? lst) '() (append (reverse (cdr lst)) (cons (car lst) '())))) (define (eof-object? x) (or (and (number? x) (= x -1)) (and (char? x) (eof-object? (char->integer x))))) (define (char=? x y) (and (char? x) (char? y) (eq? x y))) (define (char-alphabetic? x) (and (char? x) (let ((i (char->integer x))) (or (and (>= i (char->integer #\A)) (<= i (char->integer #\Z))) (and (>= i (char->integer #\a)) (<= i (char->integer #\z))))))) (define (char-numeric? x) (and (char? x) (let ((i (char->integer x))) (and (>= i (char->integer #\0)) (<= i (char->integer #\9)))))) (define (current-input-port) #f) (define (port-filename port) "") (define (port-line port) 0) (define (port-column port) 0) (define (ftell port) 0) (define (false-if-exception x) x)