ARM: Implement long division.

* lib/mes/div.c (__mesabi_log2i): New procedure.
(__mesabi_uldiv1): New procedure.
(__mesabi_uldiv): Use it.

Co-Authored-By: Nathalie Kopaczewski <natkopa@gmail.com>
This commit is contained in:
Danny Milosavljevic 2020-11-16 03:20:16 +01:00 committed by Jan (janneke) Nieuwenhuizen
parent a5f30ee27b
commit c1dcdc5d7e
No known key found for this signature in database
GPG key ID: F3C1A0D9C1D65273

View file

@ -2,6 +2,7 @@
* GNU Mes --- Maxwell Equations of Software
* Copyright © 2016,2017,2018,2019 Jan (janneke) Nieuwenhuizen <janneke@gnu.org>
* Copyright © 2019 Danny Milosavljevic <dannym@scratchpost.org>
* Copyright © 2020 Nathalie Kopaczewski <natkopa@gmail.com>
*
* This file is part of GNU Mes.
*
@ -24,77 +25,211 @@
#include <limits.h>
#include <signal.h>
typedef struct
struct ldiv_t
{
long quot;
long rem;
} ldiv_t;
};
int __raise(int);
int __raise (int);
void
__mesabi_div0 (void)
{
if (__raise(SIGFPE) < 0) { /* could not raise SIGFPE */
/* Fail in any way possible */
unsigned char* x = (unsigned char*) 0;
*x = 2;
}
if (__raise (SIGFPE) < 0) /* could not raise SIGFPE */
{
/* Fail in any way possible */
unsigned char *x = (unsigned char *) 0;
*x = 2;
}
}
#define ULONG_HIGHBITMASK LONG_MIN
#define ULONG_BITCOUNT (sizeof (unsigned long)*8)
/** Compute the logarithm of base 2 of D. The result is rounded down.
That is equal to the highest-index set bit in D.
The idea is to shift D to the right in order to find the index i of the first most-significant digit > 0.
The computation is done by bisection, for speed.
Recurse:
Two halves are determined of the remaining slice.
The first half checked is the higher-significant half.
If that higher-significant half is not zero, recurse on that one.
Otherwise, recurse on the lower-significant half.
Precondition: D > 0 */
static unsigned int
__mesabi_log2i (unsigned long D)
{
unsigned int n = ULONG_BITCOUNT;
unsigned int i = 0U;
unsigned long D1;
while (n >= 2U)
{ /* while still two halves possible */
n >>= 1U;
/* D1: higher-significant half of D */
D1 = D >> n;
if (D1 > 0UL)
{
/* We know that the resulting index has to be in the higher-significant half.
In that case, lower-significant half of D is superfluous for determination of i,
therefore scroll and continue with higher-significant half. */
D = D1;
i += n;
}
}
return i;
}
#if 0
static void
test_log2i (void)
{
assert (log2i (1) == 0);
assert (log2i (1) == 0);
assert (log2i (2) == 1);
assert (log2i (3) == 1);
assert (log2i (4) == 2);
assert (log2i (5) == 2);
assert (log2i (6) == 2);
assert (log2i (7) == 2);
assert (log2i (8) == 3);
assert (log2i (9) == 3);
assert (log2i (10) == 3);
assert (log2i (11) == 3);
assert (log2i (12) == 3);
assert (log2i (13) == 3);
assert (log2i (71) == 6);
assert (log2i (72) == 6);
assert (log2i (73) == 6);
assert (log2i (74) == 6);
assert (log2i (75) == 6);
assert (log2i (99) == 6);
assert (log2i (2147483648) == 31);
assert (log2i (3221225471) == 31);
assert (log2i (4294967294) == 31);
assert (log2i (4294967295) == 31);
}
#endif
/** Perform unsigned integer division of N by D; store the remainder
into *REMAINDER; return the quotient.
This is currently implemented as long division.
R is the remainder. R >= 0. R starts at N.
QUOTIENT is built up bit by bit starting at the most significant bit [*].
Values D', starting at D << ULONG_BITCOUNT [*], going down to 1,
divided by 2 each time, are iterated over, doing: If R >= D',
subtract D' from R, and append new LSB 1 to the QUOTIENT.
Otherwise, subtract 0 from R (implicit), and append new LSB 0 to the
QUOTIENT (0 is the implicit default).
[*] As a special consideration for C throwing away bits when
left-shifting, D' starts at the highest value that will not lose
bits in this way instead. (ULONG_BITCOUNT - log2i(D) - 1) is
the number of leading zeroes in D in binary radix.
Precondition: D > 0 */
static unsigned long
__mesabi_uldiv1 (unsigned long N, unsigned long D, unsigned long *remainder)
{
// Note: __mesabi_log2i(D) < ULONG_BITCOUNT
unsigned int j = ULONG_BITCOUNT - __mesabi_log2i (D); /* Note: Or j = __mesabi_log2i(N) + 1 - __mesabi_log2i(D) */
// Note: assert(j - 1 == __builtin_clzl(D)); on GCC
unsigned long quotient = 0UL;
unsigned long R = N;
for (D <<= (j - 1); j > 0U; --j, D >>= 1U)
{
quotient <<= 1U;
if (R >= D)
{
R -= D;
quotient |= 1UL;
}
}
*remainder = R;
return quotient;
}
#if 0
static void
assert_uldiv (unsigned long N, unsigned long D, unsigned long expected_quotient,
unsigned long expected_remainder)
{
unsigned long remainder;
unsigned long quotient;
quotient = uldiv (N, D, &remainder);
printf ("%lu/%lu = %lu;%lu\n", N, D, quotient, remainder);
assert (quotient == expected_quotient);
assert (remainder == expected_remainder);
}
static void
test_uldiv (void)
{
//assert_uldiv(0, 0, 0, 0);
assert_uldiv (0, 1, 0, 0);
assert_uldiv (1, 1, 1, 0);
assert_uldiv (72, 5, 14, 2);
assert_uldiv (0xffffffff, 1, 0xffffffff, 0);
assert_uldiv (0xffffffff, 2, 0x7fffffff, 1);
}
#endif
/* Compare gcc: __udivmoddi4 */
unsigned long
__mesabi_uldiv (unsigned long a, unsigned long b, unsigned long* remainder)
__mesabi_uldiv (unsigned long a, unsigned long b, unsigned long *remainder)
{
unsigned long tmp;
if (!remainder)
remainder = &tmp;
*remainder = 0;
switch (b) {
case 64UL:
*remainder = a & 63UL;
return a >> 6UL;
case 32UL:
*remainder = a & 31UL;
return a >> 5UL;
case 16UL:
*remainder = a & 15UL;
return a >> 4UL;
case 8UL:
*remainder = a & 7UL;
return a >> 3UL;
case 4UL:
*remainder = a & 3UL;
return a >> 2UL;
case 2UL:
*remainder = a & 1UL;
return a >> 1UL;
case 1UL:
*remainder = 0;
return a;
case 0UL:
__mesabi_div0();
return 0UL;
default:
switch (b)
{
unsigned long x;
for (x = 0; a >= b; a -= b)
++x;
*remainder = a;
return x;
case 64UL:
*remainder = a & 63UL;
return a >> 6UL;
case 32UL:
*remainder = a & 31UL;
return a >> 5UL;
case 16UL:
*remainder = a & 15UL;
return a >> 4UL;
case 8UL:
*remainder = a & 7UL;
return a >> 3UL;
case 4UL:
*remainder = a & 3UL;
return a >> 2UL;
case 2UL:
*remainder = a & 1UL;
return a >> 1UL;
case 1UL:
*remainder = 0;
return a;
case 0UL:
__mesabi_div0 ();
return 0UL;
default:
return __mesabi_uldiv1 (a, b, remainder);
}
}
}
/* Note: Rounds towards zero.
Maintainer: Be careful to satisfy quot * b + rem == a.
That means that rem can be negative. */
void
__mesabi_ldiv(long a, long b, ldiv_t* result)
__mesabi_ldiv (long a, long b, struct ldiv_t *result)
{
int negate_result = (a < 0) ^ (b < 0);
if (b == LONG_MIN)
__mesabi_div0();
__mesabi_div0 ();
if (a != LONG_MIN)
{
int negative_a = (a < 0);
@ -102,7 +237,7 @@ __mesabi_ldiv(long a, long b, ldiv_t* result)
a = -a;
if (b < 0)
b = -b;
result->quot = __mesabi_uldiv(a, b, &result->rem);
result->quot = __mesabi_uldiv (a, b, &result->rem);
if (negate_result)
result->quot = -result->quot;
if (negative_a)
@ -120,13 +255,13 @@ __mesabi_ldiv(long a, long b, ldiv_t* result)
negate_result = !negate_result;
}
else if (b == 0)
__mesabi_div0();
__mesabi_div0 ();
else
{
long x;
for (x = 0; a <= -b; a += b)
++x;
result->rem = a; /* negative */
result->rem = a; /* negative */
result->quot = x;
}
if (negate_result)
@ -137,15 +272,15 @@ __mesabi_ldiv(long a, long b, ldiv_t* result)
long
__mesabi_imod (long a, long b)
{
ldiv_t result;
__mesabi_ldiv(a, b, &result);
struct ldiv_t result;
__mesabi_ldiv (a, b, &result);
return result.rem;
}
int
__mesabi_idiv (int a, int b)
{
ldiv_t result;
__mesabi_ldiv(a, b, &result);
struct ldiv_t result;
__mesabi_ldiv (a, b, &result);
return result.quot;
}