Support (sxml xpath) for Nyacc c99.
* module/sxml/xpath.mes: New file. * module/sxml/xpath.upstream.mes: Import from Guile. * AUTHORS: Mention it.
This commit is contained in:
parent
096a2ed52e
commit
7d5c3a0201
3
AUTHORS
3
AUTHORS
|
@ -28,3 +28,6 @@ module/mes/optargs.upstream.mes
|
||||||
|
|
||||||
Srfi-1 bits from Guile
|
Srfi-1 bits from Guile
|
||||||
module/srfi/srfi-1.upstream.mes
|
module/srfi/srfi-1.upstream.mes
|
||||||
|
|
||||||
|
Sxml xpath from Guile
|
||||||
|
module/sxml/xpath.upstream.mes
|
26
module/sxml/xpath.mes
Normal file
26
module/sxml/xpath.mes
Normal file
|
@ -0,0 +1,26 @@
|
||||||
|
;;; -*-scheme-*-
|
||||||
|
|
||||||
|
;;; Mes --- Maxwell Equations of Software
|
||||||
|
;;; Copyright © 2016 Jan Nieuwenhuizen <janneke@gnu.org>
|
||||||
|
;;;
|
||||||
|
;;; This file is part of Mes.
|
||||||
|
;;;
|
||||||
|
;;; Mes is free software; you can redistribute it and/or modify it
|
||||||
|
;;; under the terms of the GNU General Public License as published by
|
||||||
|
;;; the Free Software Foundation; either version 3 of the License, or (at
|
||||||
|
;;; your option) any later version.
|
||||||
|
;;;
|
||||||
|
;;; Mes is distributed in the hope that it will be useful, but
|
||||||
|
;;; WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
;;; GNU General Public License for more details.
|
||||||
|
;;;
|
||||||
|
;;; You should have received a copy of the GNU General Public License
|
||||||
|
;;; along with Mes. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
;;; Commentary:
|
||||||
|
|
||||||
|
;;; xpath
|
||||||
|
|
||||||
|
(mes-use-module (mes scm))
|
||||||
|
(mes-use-module (sxml xpath.upstream))
|
493
module/sxml/xpath.upstream.mes
Normal file
493
module/sxml/xpath.upstream.mes
Normal file
|
@ -0,0 +1,493 @@
|
||||||
|
;;;; (sxml xpath) -- SXPath
|
||||||
|
;;;;
|
||||||
|
;;;; Copyright (C) 2009 Free Software Foundation, Inc.
|
||||||
|
;;;; Modified 2004 by Andy Wingo <wingo at pobox dot com>.
|
||||||
|
;;;; Written 2001 by Oleg Kiselyov <oleg at pobox dot com> SXPath.scm.
|
||||||
|
;;;;
|
||||||
|
;;;; This library is free software; you can redistribute it and/or
|
||||||
|
;;;; modify it under the terms of the GNU Lesser General Public
|
||||||
|
;;;; License as published by the Free Software Foundation; either
|
||||||
|
;;;; version 3 of the License, or (at your option) any later version.
|
||||||
|
;;;;
|
||||||
|
;;;; This library is distributed in the hope that it will be useful,
|
||||||
|
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||||
|
;;;; Lesser General Public License for more details.
|
||||||
|
;;;;
|
||||||
|
;;;; You should have received a copy of the GNU Lesser General Public
|
||||||
|
;;;; License along with this library; if not, write to the Free Software
|
||||||
|
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||||
|
;;;;
|
||||||
|
|
||||||
|
;;; Commentary:
|
||||||
|
;;
|
||||||
|
;;@heading SXPath: SXML Query Language
|
||||||
|
;;
|
||||||
|
;; SXPath is a query language for SXML, an instance of XML Information
|
||||||
|
;; set (Infoset) in the form of s-expressions. See @code{(sxml ssax)}
|
||||||
|
;; for the definition of SXML and more details. SXPath is also a
|
||||||
|
;; translation into Scheme of an XML Path Language,
|
||||||
|
;; @uref{http://www.w3.org/TR/xpath,XPath}. XPath and SXPath describe
|
||||||
|
;; means of selecting a set of Infoset's items or their properties.
|
||||||
|
;;
|
||||||
|
;; To facilitate queries, XPath maps the XML Infoset into an explicit
|
||||||
|
;; tree, and introduces important notions of a location path and a
|
||||||
|
;; current, context node. A location path denotes a selection of a set of
|
||||||
|
;; nodes relative to a context node. Any XPath tree has a distinguished,
|
||||||
|
;; root node -- which serves as the context node for absolute location
|
||||||
|
;; paths. Location path is recursively defined as a location step joined
|
||||||
|
;; with a location path. A location step is a simple query of the
|
||||||
|
;; database relative to a context node. A step may include expressions
|
||||||
|
;; that further filter the selected set. Each node in the resulting set
|
||||||
|
;; is used as a context node for the adjoining location path. The result
|
||||||
|
;; of the step is a union of the sets returned by the latter location
|
||||||
|
;; paths.
|
||||||
|
;;
|
||||||
|
;; The SXML representation of the XML Infoset (see SSAX.scm) is rather
|
||||||
|
;; suitable for querying as it is. Bowing to the XPath specification,
|
||||||
|
;; we will refer to SXML information items as 'Nodes':
|
||||||
|
;;@example
|
||||||
|
;; <Node> ::= <Element> | <attributes-coll> | <attrib>
|
||||||
|
;; | "text string" | <PI>
|
||||||
|
;;@end example
|
||||||
|
;; This production can also be described as
|
||||||
|
;;@example
|
||||||
|
;; <Node> ::= (name . <Nodeset>) | "text string"
|
||||||
|
;;@end example
|
||||||
|
;; An (ordered) set of nodes is just a list of the constituent nodes:
|
||||||
|
;;@example
|
||||||
|
;; <Nodeset> ::= (<Node> ...)
|
||||||
|
;;@end example
|
||||||
|
;; Nodesets, and Nodes other than text strings are both lists. A
|
||||||
|
;; <Nodeset> however is either an empty list, or a list whose head is not
|
||||||
|
;; a symbol. A symbol at the head of a node is either an XML name (in
|
||||||
|
;; which case it's a tag of an XML element), or an administrative name
|
||||||
|
;; such as '@@'. This uniform list representation makes processing rather
|
||||||
|
;; simple and elegant, while avoiding confusion. The multi-branch tree
|
||||||
|
;; structure formed by the mutually-recursive datatypes <Node> and
|
||||||
|
;; <Nodeset> lends itself well to processing by functional languages.
|
||||||
|
;;
|
||||||
|
;; A location path is in fact a composite query over an XPath tree or
|
||||||
|
;; its branch. A singe step is a combination of a projection, selection
|
||||||
|
;; or a transitive closure. Multiple steps are combined via join and
|
||||||
|
;; union operations. This insight allows us to @emph{elegantly}
|
||||||
|
;; implement XPath as a sequence of projection and filtering primitives
|
||||||
|
;; -- converters -- joined by @dfn{combinators}. Each converter takes a
|
||||||
|
;; node and returns a nodeset which is the result of the corresponding
|
||||||
|
;; query relative to that node. A converter can also be called on a set
|
||||||
|
;; of nodes. In that case it returns a union of the corresponding
|
||||||
|
;; queries over each node in the set. The union is easily implemented as
|
||||||
|
;; a list append operation as all nodes in a SXML tree are considered
|
||||||
|
;; distinct, by XPath conventions. We also preserve the order of the
|
||||||
|
;; members in the union. Query combinators are high-order functions:
|
||||||
|
;; they take converter(s) (which is a Node|Nodeset -> Nodeset function)
|
||||||
|
;; and compose or otherwise combine them. We will be concerned with only
|
||||||
|
;; relative location paths [XPath]: an absolute location path is a
|
||||||
|
;; relative path applied to the root node.
|
||||||
|
;;
|
||||||
|
;; Similarly to XPath, SXPath defines full and abbreviated notations
|
||||||
|
;; for location paths. In both cases, the abbreviated notation can be
|
||||||
|
;; mechanically expanded into the full form by simple rewriting
|
||||||
|
;; rules. In case of SXPath the corresponding rules are given as
|
||||||
|
;; comments to a sxpath function, below. The regression test suite at
|
||||||
|
;; the end of this file shows a representative sample of SXPaths in
|
||||||
|
;; both notations, juxtaposed with the corresponding XPath
|
||||||
|
;; expressions. Most of the samples are borrowed literally from the
|
||||||
|
;; XPath specification, while the others are adjusted for our running
|
||||||
|
;; example, tree1.
|
||||||
|
;;
|
||||||
|
;;; Code:
|
||||||
|
|
||||||
|
(define-module (sxml xpath)
|
||||||
|
#:use-module (ice-9 pretty-print)
|
||||||
|
#:export (nodeset? node-typeof? node-eq? node-equal? node-pos
|
||||||
|
filter take-until take-after map-union node-reverse
|
||||||
|
node-trace select-kids node-self node-join node-reduce
|
||||||
|
node-or node-closure node-parent
|
||||||
|
sxpath))
|
||||||
|
|
||||||
|
;; Upstream version:
|
||||||
|
; $Id: SXPath.scm,v 3.5 2001/01/12 23:20:35 oleg Exp oleg $
|
||||||
|
|
||||||
|
(define (nodeset? x)
|
||||||
|
(or (and (pair? x) (not (symbol? (car x)))) (null? x)))
|
||||||
|
|
||||||
|
;-------------------------
|
||||||
|
; Basic converters and applicators
|
||||||
|
; A converter is a function
|
||||||
|
; type Converter = Node|Nodeset -> Nodeset
|
||||||
|
; A converter can also play a role of a predicate: in that case, if a
|
||||||
|
; converter, applied to a node or a nodeset, yields a non-empty
|
||||||
|
; nodeset, the converter-predicate is deemed satisfied. Throughout
|
||||||
|
; this file a nil nodeset is equivalent to #f in denoting a failure.
|
||||||
|
|
||||||
|
; The following function implements a 'Node test' as defined in
|
||||||
|
; Sec. 2.3 of XPath document. A node test is one of the components of a
|
||||||
|
; location step. It is also a converter-predicate in SXPath.
|
||||||
|
;
|
||||||
|
; The function node-typeof? takes a type criterion and returns a function,
|
||||||
|
; which, when applied to a node, will tell if the node satisfies
|
||||||
|
; the test.
|
||||||
|
; node-typeof? :: Crit -> Node -> Boolean
|
||||||
|
;
|
||||||
|
; The criterion 'crit' is a symbol, one of the following:
|
||||||
|
; id - tests if the Node has the right name (id)
|
||||||
|
; @ - tests if the Node is an <attributes-coll>
|
||||||
|
; * - tests if the Node is an <Element>
|
||||||
|
; *text* - tests if the Node is a text node
|
||||||
|
; *PI* - tests if the Node is a PI node
|
||||||
|
; *any* - #t for any type of Node
|
||||||
|
|
||||||
|
(define (node-typeof? crit)
|
||||||
|
(lambda (node)
|
||||||
|
(case crit
|
||||||
|
((*) (and (pair? node) (not (memq (car node) '(@ *PI*)))))
|
||||||
|
((*any*) #t)
|
||||||
|
((*text*) (string? node))
|
||||||
|
(else
|
||||||
|
(and (pair? node) (eq? crit (car node))))
|
||||||
|
)))
|
||||||
|
|
||||||
|
|
||||||
|
; Curried equivalence converter-predicates
|
||||||
|
(define (node-eq? other)
|
||||||
|
(lambda (node)
|
||||||
|
(eq? other node)))
|
||||||
|
|
||||||
|
(define (node-equal? other)
|
||||||
|
(lambda (node)
|
||||||
|
(equal? other node)))
|
||||||
|
|
||||||
|
; node-pos:: N -> Nodeset -> Nodeset, or
|
||||||
|
; node-pos:: N -> Converter
|
||||||
|
; Select the N'th element of a Nodeset and return as a singular Nodeset;
|
||||||
|
; Return an empty nodeset if the Nth element does not exist.
|
||||||
|
; ((node-pos 1) Nodeset) selects the node at the head of the Nodeset,
|
||||||
|
; if exists; ((node-pos 2) Nodeset) selects the Node after that, if
|
||||||
|
; exists.
|
||||||
|
; N can also be a negative number: in that case the node is picked from
|
||||||
|
; the tail of the list.
|
||||||
|
; ((node-pos -1) Nodeset) selects the last node of a non-empty nodeset;
|
||||||
|
; ((node-pos -2) Nodeset) selects the last but one node, if exists.
|
||||||
|
|
||||||
|
(define (node-pos n)
|
||||||
|
(lambda (nodeset)
|
||||||
|
(cond
|
||||||
|
((not (nodeset? nodeset)) '())
|
||||||
|
((null? nodeset) nodeset)
|
||||||
|
((eqv? n 1) (list (car nodeset)))
|
||||||
|
((negative? n) ((node-pos (+ n 1 (length nodeset))) nodeset))
|
||||||
|
(else
|
||||||
|
(or (positive? n) (error "yikes!"))
|
||||||
|
((node-pos (1- n)) (cdr nodeset))))))
|
||||||
|
|
||||||
|
; filter:: Converter -> Converter
|
||||||
|
; A filter applicator, which introduces a filtering context. The argument
|
||||||
|
; converter is considered a predicate, with either #f or nil result meaning
|
||||||
|
; failure.
|
||||||
|
(define (filter pred?)
|
||||||
|
(lambda (lst) ; a nodeset or a node (will be converted to a singleton nset)
|
||||||
|
(let loop ((lst (if (nodeset? lst) lst (list lst))) (res '()))
|
||||||
|
(if (null? lst)
|
||||||
|
(reverse res)
|
||||||
|
(let ((pred-result (pred? (car lst))))
|
||||||
|
(loop (cdr lst)
|
||||||
|
(if (and pred-result (not (null? pred-result)))
|
||||||
|
(cons (car lst) res)
|
||||||
|
res)))))))
|
||||||
|
|
||||||
|
; take-until:: Converter -> Converter, or
|
||||||
|
; take-until:: Pred -> Node|Nodeset -> Nodeset
|
||||||
|
; Given a converter-predicate and a nodeset, apply the predicate to
|
||||||
|
; each element of the nodeset, until the predicate yields anything but #f or
|
||||||
|
; nil. Return the elements of the input nodeset that have been processed
|
||||||
|
; till that moment (that is, which fail the predicate).
|
||||||
|
; take-until is a variation of the filter above: take-until passes
|
||||||
|
; elements of an ordered input set till (but not including) the first
|
||||||
|
; element that satisfies the predicate.
|
||||||
|
; The nodeset returned by ((take-until (not pred)) nset) is a subset --
|
||||||
|
; to be more precise, a prefix -- of the nodeset returned by
|
||||||
|
; ((filter pred) nset)
|
||||||
|
|
||||||
|
(define (take-until pred?)
|
||||||
|
(lambda (lst) ; a nodeset or a node (will be converted to a singleton nset)
|
||||||
|
(let loop ((lst (if (nodeset? lst) lst (list lst))))
|
||||||
|
(if (null? lst) lst
|
||||||
|
(let ((pred-result (pred? (car lst))))
|
||||||
|
(if (and pred-result (not (null? pred-result)))
|
||||||
|
'()
|
||||||
|
(cons (car lst) (loop (cdr lst)))))
|
||||||
|
))))
|
||||||
|
|
||||||
|
|
||||||
|
; take-after:: Converter -> Converter, or
|
||||||
|
; take-after:: Pred -> Node|Nodeset -> Nodeset
|
||||||
|
; Given a converter-predicate and a nodeset, apply the predicate to
|
||||||
|
; each element of the nodeset, until the predicate yields anything but #f or
|
||||||
|
; nil. Return the elements of the input nodeset that have not been processed:
|
||||||
|
; that is, return the elements of the input nodeset that follow the first
|
||||||
|
; element that satisfied the predicate.
|
||||||
|
; take-after along with take-until partition an input nodeset into three
|
||||||
|
; parts: the first element that satisfies a predicate, all preceding
|
||||||
|
; elements and all following elements.
|
||||||
|
|
||||||
|
(define (take-after pred?)
|
||||||
|
(lambda (lst) ; a nodeset or a node (will be converted to a singleton nset)
|
||||||
|
(let loop ((lst (if (nodeset? lst) lst (list lst))))
|
||||||
|
(if (null? lst) lst
|
||||||
|
(let ((pred-result (pred? (car lst))))
|
||||||
|
(if (and pred-result (not (null? pred-result)))
|
||||||
|
(cdr lst)
|
||||||
|
(loop (cdr lst))))
|
||||||
|
))))
|
||||||
|
|
||||||
|
; Apply proc to each element of lst and return the list of results.
|
||||||
|
; if proc returns a nodeset, splice it into the result
|
||||||
|
;
|
||||||
|
; From another point of view, map-union is a function Converter->Converter,
|
||||||
|
; which places an argument-converter in a joining context.
|
||||||
|
|
||||||
|
(define (map-union proc lst)
|
||||||
|
(if (null? lst) lst
|
||||||
|
(let ((proc-res (proc (car lst))))
|
||||||
|
((if (nodeset? proc-res) append cons)
|
||||||
|
proc-res (map-union proc (cdr lst))))))
|
||||||
|
|
||||||
|
; node-reverse :: Converter, or
|
||||||
|
; node-reverse:: Node|Nodeset -> Nodeset
|
||||||
|
; Reverses the order of nodes in the nodeset
|
||||||
|
; This basic converter is needed to implement a reverse document order
|
||||||
|
; (see the XPath Recommendation).
|
||||||
|
(define node-reverse
|
||||||
|
(lambda (node-or-nodeset)
|
||||||
|
(if (not (nodeset? node-or-nodeset)) (list node-or-nodeset)
|
||||||
|
(reverse node-or-nodeset))))
|
||||||
|
|
||||||
|
; node-trace:: String -> Converter
|
||||||
|
; (node-trace title) is an identity converter. In addition it prints out
|
||||||
|
; a node or nodeset it is applied to, prefixed with the 'title'.
|
||||||
|
; This converter is very useful for debugging.
|
||||||
|
|
||||||
|
(define (node-trace title)
|
||||||
|
(lambda (node-or-nodeset)
|
||||||
|
(display "\n-->")
|
||||||
|
(display title)
|
||||||
|
(display " :")
|
||||||
|
(pretty-print node-or-nodeset)
|
||||||
|
node-or-nodeset))
|
||||||
|
|
||||||
|
|
||||||
|
;-------------------------
|
||||||
|
; Converter combinators
|
||||||
|
;
|
||||||
|
; Combinators are higher-order functions that transmogrify a converter
|
||||||
|
; or glue a sequence of converters into a single, non-trivial
|
||||||
|
; converter. The goal is to arrive at converters that correspond to
|
||||||
|
; XPath location paths.
|
||||||
|
;
|
||||||
|
; From a different point of view, a combinator is a fixed, named
|
||||||
|
; _pattern_ of applying converters. Given below is a complete set of
|
||||||
|
; such patterns that together implement XPath location path
|
||||||
|
; specification. As it turns out, all these combinators can be built
|
||||||
|
; from a small number of basic blocks: regular functional composition,
|
||||||
|
; map-union and filter applicators, and the nodeset union.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
; select-kids:: Pred -> Node -> Nodeset
|
||||||
|
; Given a Node, return an (ordered) subset its children that satisfy
|
||||||
|
; the Pred (a converter, actually)
|
||||||
|
; select-kids:: Pred -> Nodeset -> Nodeset
|
||||||
|
; The same as above, but select among children of all the nodes in
|
||||||
|
; the Nodeset
|
||||||
|
;
|
||||||
|
; More succinctly, the signature of this function is
|
||||||
|
; select-kids:: Converter -> Converter
|
||||||
|
|
||||||
|
(define (select-kids test-pred?)
|
||||||
|
(lambda (node) ; node or node-set
|
||||||
|
(cond
|
||||||
|
((null? node) node)
|
||||||
|
((not (pair? node)) '()) ; No children
|
||||||
|
((symbol? (car node))
|
||||||
|
((filter test-pred?) (cdr node))) ; it's a single node
|
||||||
|
(else (map-union (select-kids test-pred?) node)))))
|
||||||
|
|
||||||
|
|
||||||
|
; node-self:: Pred -> Node -> Nodeset, or
|
||||||
|
; node-self:: Converter -> Converter
|
||||||
|
; Similar to select-kids but apply to the Node itself rather
|
||||||
|
; than to its children. The resulting Nodeset will contain either one
|
||||||
|
; component, or will be empty (if the Node failed the Pred).
|
||||||
|
(define node-self filter)
|
||||||
|
|
||||||
|
|
||||||
|
; node-join:: [LocPath] -> Node|Nodeset -> Nodeset, or
|
||||||
|
; node-join:: [Converter] -> Converter
|
||||||
|
; join the sequence of location steps or paths as described
|
||||||
|
; in the title comments above.
|
||||||
|
(define (node-join . selectors)
|
||||||
|
(lambda (nodeset) ; Nodeset or node
|
||||||
|
(let loop ((nodeset nodeset) (selectors selectors))
|
||||||
|
(if (null? selectors) nodeset
|
||||||
|
(loop
|
||||||
|
(if (nodeset? nodeset)
|
||||||
|
(map-union (car selectors) nodeset)
|
||||||
|
((car selectors) nodeset))
|
||||||
|
(cdr selectors))))))
|
||||||
|
|
||||||
|
|
||||||
|
; node-reduce:: [LocPath] -> Node|Nodeset -> Nodeset, or
|
||||||
|
; node-reduce:: [Converter] -> Converter
|
||||||
|
; A regular functional composition of converters.
|
||||||
|
; From a different point of view,
|
||||||
|
; ((apply node-reduce converters) nodeset)
|
||||||
|
; is equivalent to
|
||||||
|
; (foldl apply nodeset converters)
|
||||||
|
; i.e., folding, or reducing, a list of converters with the nodeset
|
||||||
|
; as a seed.
|
||||||
|
(define (node-reduce . converters)
|
||||||
|
(lambda (nodeset) ; Nodeset or node
|
||||||
|
(let loop ((nodeset nodeset) (converters converters))
|
||||||
|
(if (null? converters) nodeset
|
||||||
|
(loop ((car converters) nodeset) (cdr converters))))))
|
||||||
|
|
||||||
|
|
||||||
|
; node-or:: [Converter] -> Converter
|
||||||
|
; This combinator applies all converters to a given node and
|
||||||
|
; produces the union of their results.
|
||||||
|
; This combinator corresponds to a union, '|' operation for XPath
|
||||||
|
; location paths.
|
||||||
|
; (define (node-or . converters)
|
||||||
|
; (lambda (node-or-nodeset)
|
||||||
|
; (if (null? converters) node-or-nodeset
|
||||||
|
; (append
|
||||||
|
; ((car converters) node-or-nodeset)
|
||||||
|
; ((apply node-or (cdr converters)) node-or-nodeset)))))
|
||||||
|
; More optimal implementation follows
|
||||||
|
(define (node-or . converters)
|
||||||
|
(lambda (node-or-nodeset)
|
||||||
|
(let loop ((result '()) (converters converters))
|
||||||
|
(if (null? converters) result
|
||||||
|
(loop (append result (or ((car converters) node-or-nodeset) '()))
|
||||||
|
(cdr converters))))))
|
||||||
|
|
||||||
|
|
||||||
|
; node-closure:: Converter -> Converter
|
||||||
|
; Select all _descendants_ of a node that satisfy a converter-predicate.
|
||||||
|
; This combinator is similar to select-kids but applies to
|
||||||
|
; grand... children as well.
|
||||||
|
; This combinator implements the "descendant::" XPath axis
|
||||||
|
; Conceptually, this combinator can be expressed as
|
||||||
|
; (define (node-closure f)
|
||||||
|
; (node-or
|
||||||
|
; (select-kids f)
|
||||||
|
; (node-reduce (select-kids (node-typeof? '*)) (node-closure f))))
|
||||||
|
; This definition, as written, looks somewhat like a fixpoint, and it
|
||||||
|
; will run forever. It is obvious however that sooner or later
|
||||||
|
; (select-kids (node-typeof? '*)) will return an empty nodeset. At
|
||||||
|
; this point further iterations will no longer affect the result and
|
||||||
|
; can be stopped.
|
||||||
|
|
||||||
|
(define (node-closure test-pred?)
|
||||||
|
(lambda (node) ; Nodeset or node
|
||||||
|
(let loop ((parent node) (result '()))
|
||||||
|
(if (null? parent) result
|
||||||
|
(loop ((select-kids (node-typeof? '*)) parent)
|
||||||
|
(append result
|
||||||
|
((select-kids test-pred?) parent)))
|
||||||
|
))))
|
||||||
|
|
||||||
|
; node-parent:: RootNode -> Converter
|
||||||
|
; (node-parent rootnode) yields a converter that returns a parent of a
|
||||||
|
; node it is applied to. If applied to a nodeset, it returns the list
|
||||||
|
; of parents of nodes in the nodeset. The rootnode does not have
|
||||||
|
; to be the root node of the whole SXML tree -- it may be a root node
|
||||||
|
; of a branch of interest.
|
||||||
|
; Given the notation of Philip Wadler's paper on semantics of XSLT,
|
||||||
|
; parent(x) = { y | y=subnode*(root), x=subnode(y) }
|
||||||
|
; Therefore, node-parent is not the fundamental converter: it can be
|
||||||
|
; expressed through the existing ones. Yet node-parent is a rather
|
||||||
|
; convenient converter. It corresponds to a parent:: axis of SXPath.
|
||||||
|
; Note that the parent:: axis can be used with an attribute node as well!
|
||||||
|
|
||||||
|
(define (node-parent rootnode)
|
||||||
|
(lambda (node) ; Nodeset or node
|
||||||
|
(if (nodeset? node) (map-union (node-parent rootnode) node)
|
||||||
|
(let ((pred
|
||||||
|
(node-or
|
||||||
|
(node-reduce
|
||||||
|
(node-self (node-typeof? '*))
|
||||||
|
(select-kids (node-eq? node)))
|
||||||
|
(node-join
|
||||||
|
(select-kids (node-typeof? '@))
|
||||||
|
(select-kids (node-eq? node))))))
|
||||||
|
((node-or
|
||||||
|
(node-self pred)
|
||||||
|
(node-closure pred))
|
||||||
|
rootnode)))))
|
||||||
|
|
||||||
|
;-------------------------
|
||||||
|
; Evaluate an abbreviated SXPath
|
||||||
|
; sxpath:: AbbrPath -> Converter, or
|
||||||
|
; sxpath:: AbbrPath -> Node|Nodeset -> Nodeset
|
||||||
|
; AbbrPath is a list. It is translated to the full SXPath according
|
||||||
|
; to the following rewriting rules
|
||||||
|
; (sxpath '()) -> (node-join)
|
||||||
|
; (sxpath '(path-component ...)) ->
|
||||||
|
; (node-join (sxpath1 path-component) (sxpath '(...)))
|
||||||
|
; (sxpath1 '//) -> (node-or
|
||||||
|
; (node-self (node-typeof? '*any*))
|
||||||
|
; (node-closure (node-typeof? '*any*)))
|
||||||
|
; (sxpath1 '(equal? x)) -> (select-kids (node-equal? x))
|
||||||
|
; (sxpath1 '(eq? x)) -> (select-kids (node-eq? x))
|
||||||
|
; (sxpath1 ?symbol) -> (select-kids (node-typeof? ?symbol)
|
||||||
|
; (sxpath1 procedure) -> procedure
|
||||||
|
; (sxpath1 '(?symbol ...)) -> (sxpath1 '((?symbol) ...))
|
||||||
|
; (sxpath1 '(path reducer ...)) ->
|
||||||
|
; (node-reduce (sxpath path) (sxpathr reducer) ...)
|
||||||
|
; (sxpathr number) -> (node-pos number)
|
||||||
|
; (sxpathr path-filter) -> (filter (sxpath path-filter))
|
||||||
|
|
||||||
|
(define (sxpath path)
|
||||||
|
(lambda (nodeset)
|
||||||
|
(let loop ((nodeset nodeset) (path path))
|
||||||
|
(cond
|
||||||
|
((null? path) nodeset)
|
||||||
|
((nodeset? nodeset)
|
||||||
|
(map-union (sxpath path) nodeset))
|
||||||
|
((procedure? (car path))
|
||||||
|
(loop ((car path) nodeset) (cdr path)))
|
||||||
|
((eq? '// (car path))
|
||||||
|
(loop
|
||||||
|
((if (nodeset? nodeset) append cons) nodeset
|
||||||
|
((node-closure (node-typeof? '*any*)) nodeset))
|
||||||
|
(cdr path)))
|
||||||
|
((symbol? (car path))
|
||||||
|
(loop ((select-kids (node-typeof? (car path))) nodeset)
|
||||||
|
(cdr path)))
|
||||||
|
((and (pair? (car path)) (eq? 'equal? (caar path)))
|
||||||
|
(loop ((select-kids (apply node-equal? (cdar path))) nodeset)
|
||||||
|
(cdr path)))
|
||||||
|
((and (pair? (car path)) (eq? 'eq? (caar path)))
|
||||||
|
(loop ((select-kids (apply node-eq? (cdar path))) nodeset)
|
||||||
|
(cdr path)))
|
||||||
|
((pair? (car path))
|
||||||
|
(let reducer ((nodeset
|
||||||
|
(if (symbol? (caar path))
|
||||||
|
((select-kids (node-typeof? (caar path))) nodeset)
|
||||||
|
(loop nodeset (caar path))))
|
||||||
|
(reducing-path (cdar path)))
|
||||||
|
(cond
|
||||||
|
((null? reducing-path) (loop nodeset (cdr path)))
|
||||||
|
((number? (car reducing-path))
|
||||||
|
(reducer ((node-pos (car reducing-path)) nodeset)
|
||||||
|
(cdr reducing-path)))
|
||||||
|
(else
|
||||||
|
(reducer ((filter (sxpath (car reducing-path))) nodeset)
|
||||||
|
(cdr reducing-path))))))
|
||||||
|
(else
|
||||||
|
(error "Invalid path step: " (car path)))))))
|
||||||
|
|
||||||
|
;;; arch-tag: c4e57abf-6b61-4612-a6aa-d1536d440774
|
||||||
|
;;; xpath.scm ends here
|
Loading…
Reference in a new issue